

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: Z6PN9VQL6L

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

3D SEISMIC ANALYSIS OF TURBIDITIC CHANNELS IN THE QUEBRADAS FORMATION, POTIGUAR BASIN.

Yan Lima (Federal University of Ceará), Narelle Maia de Almeida (Federal University of Ceará), Francisco Leonardo Soares Facundo (Federal University of Ceará), Karen Leopoldino Oliveira (Federal University of Ceará)

3D SEISMIC ANALYSIS OF TURBIDITIC CHANNELS IN THE QUEBRADAS FORMATION, POTIGUAR BASIN

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.
This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

Since 2007, the Brazilian Equatorial Margin has drawn increasing attention, driven by significant oil discoveries in its West African counterpart, such as the Jubilee and Tweneboa fields. This interest intensified from 2011 with discoveries in the Guyana-Suriname Basin, including the Zaedyus field and the Liza Complex. Within the Brazilian Equatorial Margin, the Potiguar Basin stands out as one of the most promising areas in deep and ultra-deep waters, especially after recent discoveries in the Pitu-Oeste and Anhangá wells. Despite this potential, there's a noticeable lack of scientific research focused on the 3D seismic analysis of the turbiditic channels within the Quebradas Formation. The main objective of this work is the mapping and seismic characterization of turbiditic reservoirs, aiming to identify potential areas for hydrocarbon accumulation.

Method and/or Theory

To achieve this, 3D seismic data and well data provided by the National Agency of Petroleum, Natural Gas and Biofuels (ANP) were integrated using Petrel and Paleoscan software. Initially, the top of the Upper Campanian Quebradas Formation was mapped. Subsequently, various seismic attributes like RMS amplitude, sweetness, and variance were generated, in addition to applying spectral decomposition. Finally, geobodies of the turbiditic channels were created.

Results and Conclusions

From the analysis of attributes and geobodies, the existence of three distinct channels was revealed. These channels show high amplitudes with regions exhibiting greater seismic anomaly, which may suggest the presence of hydrocarbons. These channels were incised by turbidity currents or represent lateral accumulations of sediments proximal to the basin slope. Despite having unique trajectories, confinement, and sedimentation patterns, all channels contribute to the formation of distal lobes with a preferential NE-SW sedimentation direction. Channel 1 is rectilinear and displays bifurcations and variations in confinement, with a lateral sedimentation area to the west. Channel 2, with a slightly meandering trajectory and originating from a branching, presents multiple branches and slight distal confinement, culminating in a thick lobe partially fed by it. Channel 3, with a mixed trajectory (rectilinear-meandering) and low confinement, demonstrates a rapid decline in sediment supply, depositing a smaller volume onto a lobe predominantly fed by Channel 2. The correlation between geophysical attributes and paleotopography provides crucial information about the location and geometric arrangement of turbiditic channels and the sedimentary dynamics of the region, advancing our understanding of geological processes in the deep waters of the Potiguar Basin. Preliminary results indicate areas with potential for oil exploration in this basin. However, new analyses, studies, and drilling would be required to confirm the presence of hydrocarbons in the mapped prospects.