Submission code: ZLX6AYJML7

See this and other abstracts on our website: https://home.sbgf.org.br/Pages/resumos.php

Density model building: A comparison between
geostatistical and machine learning methods for a
regional case study

Frank Cenci Bulhoes (Petrobras), Mario Florencio Paiva (SLB), Gleidson Ferreira (Petrobras),
Alex Passamani (Petrobras)




@ SBGf Conference

18-20 nov | Ri0"'25

Density model building: A comparison between geostatistical and

machine learning methods for a regional case study

Please, do not insert author names in your submission PDF file

Copyright 2025, SBGf - Sociedade Brasileira de Geofisica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19« International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November
2025.Contents of this paper were reviewed by the Technical Committee of the 19« International Congress of the Brazilian Geophysical Society and do not
necessarily represent any position of the SBG, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes
without the written consent of the Brazilian Geophysical Society is prohibited.

Abstract

In a regional context, detailed velocity models for domain conversion can be constructed using
velocity-density transformation alongside inverted gravimetric data, even when information is
limited. Such studies often rely on 2D seismic data, while 3D surveys typically cover only small
areas, leaving gaps in data coverage. Gravimetric surveys become crucial as they can cover
regions lacking seismic data, providing valuable density information for regional studies. Although
density models can be created through a 3D grid using geostatistical methods, they require
precise variogram parametrization, necessitating an experienced modeler. Machine learning
methods offer an alternative, making the process accessible to geoscientists unfamiliar with
geostatistics. This study compares workflows based on both methodologies, discussing their
advantages, disadvantages, and potential impacts on project timelines.

Introduction

Density models typically involve creating a 3D grid divided into geological zones, populated with
spatial cells filled with modeled data (Bulhoes et al., 2015). Geostatistical methods like ordinary
kriging enable the interpolation of nearby information to fill these cells where data is lacking,
honoring spatial correlations. This allows for the quantification and prediction of unsampled
locations through linear unbiased estimation, minimizing error variance and enhancing predictive
confidence. However, the assumptions of stationarity and isotropy must be satisfied (Oliver et al.,
2015).

While kriging is effective for datasets with strong spatial autocorrelation, it requires careful
variogram modeling and is sensitive to data quality. Creating a 3D grid can be time-consuming,
and optimal kriging parameters depend on data characteristics, posing challenges for non-
geomodellers (Pyrcz et al., 2014).

Conversely, machine learning techniques, increasingly accessible through commercial platforms,
utilize various algorithms, such as convolutional neural networks and tree-based models, to
identify patterns in data. These methods offer flexibility in modeling complex relationships and are
generally more user-friendly, although they may require more data and computational resources,
with uncertainty quantification not always directly provided.

Methodology

This study was conducted in an offshore area of the Campos Basin, northeastern Rio de Janeiro,
Brazil, where water depths range from 50 m to approximately 2200 m. The project includes 220
wells across various geological settings, featuring Turonian turbidites (Carapebus Formation) and
Albian carbonates (Quissama Formation) in the post-salt section, as well as Aptian carbonates
(Lagoa Feia Formation) in the pre-salt section (Winter et al. 2007).

For geostatistical modeling, the spatial covariance structure of density from well logs was
analyzed and fitted using a variogram. This allowed for the interpolation of values at unsampled
points with weights derived from the covariance structure. Density logs from all 220 wells were
upscaled into a 3D grid skeleton divided into nine zones, as outlined in Table 01. Given the
established relationship between velocity and density (Gardner et al., 1974), seismic interval
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velocity volumes served as a secondary variable in a cokriging method to enhance density
property interpolation, even in data-scarce areas (Azevedo & Soares, 2017).

For the machine learning density model, we employed the Fast Tree method, an efficient decision
tree model based on gradient boosting (Ke et al., 2017). This model utilized seismic interval
velocity from select wells to train the density log, estimating it for all available wells. Once the
model reached the desired accuracy, it was used to estimate volumetric density properties directly
from the interval velocity volume, avoiding the need for a 3D grid. Additionally, measured density
logs were conditioned to estimate the shallow non-logged sections, following the approach
described by Brocher (2005).

Results

Model results for kriging interpolation and machine learning methods can be inspected in Figure
01.A and Figure 01.B, respectively, display a cross-section of the studied area. According to
Figure 02, extracted logs from each model are displayed jointly with measured density and
corresponding filtered version for a few wells.

ZONE SURFACES CORRELATION ZONE SURFACES CORRELATION
Kriging (r & r’) = 0.96/0.93 TOP SALT - BASE
01 SEABED - MAZUL ML (r & ) = 0.91/0.82 06 e
Kriging (r & r’) = 0.94/0.90 Kriging (r & r’) = 0.94/0.88
02 MAZUL - CRETACEOUS ML (r & *) = 0.75/0.56 07 BASE SALT - DPA ML (r & r’) = 0.81/0.66
) Kriging (r & r’) = 0.92/0.84 Kriging (r & r’) = 0.96/0.92
CRETACEOUS X i
03 TURONIAN ML (r & r°) = 0.86/0.75 e DPA-DPJ ML (r & r) = 0.91/0.84
Kriging (r & r*) = 0.95/0.91 Kriging (r & r*) = 0.97/0.95
04 TURONIAN - ALBIAN ML (r & r’) = 0.83/0.69 09 DPJ - BASEMENT ML (r & r) = 0.94/0.88

Kriging (r & r’) = 0.96/0.93
05 ALBIAN - TOP SALT ML (r & r’) = 0.85/0.72

Table 01: Structure of 3D grid presented the delimitation of each zone and the correlation between
measured density log versus kriging density log and measured density log versus ML density log
for each zone.

As a specific quality control factor for kriging interpolation, the histogram of data distribution
displays that density property follows the general trend of the input data (well logs), indicating a
reasonably controlled interpolation process, although some artifacts are visible. Also, kriging
propagated the property across zones without overburden control, which was highly structurally
controlled instead of by depth. In turn, the ML model presents a precise overburden control
displaying smoother results where the presence of artifacts was minimized (note that the model
is strongly influenced by interval velocity, which is controlled by overburden). Also, metrics from
the trained model can be analyzed in terms of how good the model predicts the data. R squared,
Mean Absolute error (MAE), and Root-mean squared error (RMSE) should be enough to evaluate
the efficiency of a model driven by data (Boutayeb et al., 2025). Thus, the final trained model
achieved R2 = 0.92, MAE = 0.04g/cm3, and RMSE = 0.07g/cm3, which indicates the model's high
confidence in describing the relationship between its variables with minimal error. Lastly, the
correlation coefficient (R) and the determination coefficient (R?) were calculated between the
measured density versus the kriging density model and ML density model extracted in each well
position. These parameters were calculated for each zone created in the 3D grid for all 220 wells
available, and it can be inspected following the scheme of Table 01 in the correlation column.

Analyzing the well response of models, kriging density logs present higher values for R & R2 than
ML density logs for each analyzed zone - salt layer assumed halite a constant value of 2.1 g/cm3
for both models, according to Yamamoto et al. (2019). As in the kriging model, all 220 wells were
used to propagate density property, explaining the high correlation because geostatistical
interpolation methods depend on a high amount of data to increase accuracy (Azevedo & Soares,

SBGf Conference Rio’25 | rio25@sbgf.org.br p.2/4



~ SBGf Conference

1s-20 nov | R10'25

2017) while ML methods do not require it. Ingesting a high quantity of data will overfit the model,
generating a biased result. About 5% of wells were used here, and representative ones were
chosen regarding water column depth and main target. ML results are generally smaller than
kriging; however, they present high accuracy and can reasonably represent the relationship
between velocity and density.

Conclusions

Both models were developed from a regional perspective to define the main density trend
distribution across a large area, anticipating a wide range of values. Kriging interpolation is well-
suited for datasets with clear spatial correlations but requires expertise to develop a well-defined
variogram, which can be complex. In contrast, machine learning methods are flexible and user-
friendly, effectively managing large amounts of complex data, making them accessible to
geoscientists. However, they can be computationally demanding, especially with extensive
datasets. Ultimately, the choice of method depends on the specific problem and data
characteristics. In this case, the ML model effectively captured depositional aspects, with
distribution influenced by the overburden, yielding reliable results with less effort.
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Figure 01: Density model calculated through kriging interpolation (A) and ML method (B). Figure
01.A, distribution histogram of input and modeled data displays the behavior of data. In Figure
01.B seismic interval velocity jointly with regression statistics can be inspected respectively for
QC purpose.
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Flgure 02: Overwew- of a set of wells displaying respectlvely measured den5|ty ML estimated
density and kriging density logs jointly with its correspondent filtered log.
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