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Abstract  

 
In a regional context, detailed velocity models for domain conversion can be constructed using 
velocity-density transformation alongside inverted gravimetric data, even when information is 
limited. Such studies often rely on 2D seismic data, while 3D surveys typically cover only small 
areas, leaving gaps in data coverage. Gravimetric surveys become crucial as they can cover 
regions lacking seismic data, providing valuable density information for regional studies. Although 
density models can be created through a 3D grid using geostatistical methods, they require 
precise variogram parametrization, necessitating an experienced modeler. Machine learning 
methods offer an alternative, making the process accessible to geoscientists unfamiliar with 
geostatistics. This study compares workflows based on both methodologies, discussing their 
advantages, disadvantages, and potential impacts on project timelines. 
 
Introduction 
 
Density models typically involve creating a 3D grid divided into geological zones, populated with 
spatial cells filled with modeled data (Bulhoes et al., 2015). Geostatistical methods like ordinary 
kriging enable the interpolation of nearby information to fill these cells where data is lacking, 
honoring spatial correlations. This allows for the quantification and prediction of unsampled 
locations through linear unbiased estimation, minimizing error variance and enhancing predictive 
confidence. However, the assumptions of stationarity and isotropy must be satisfied (Oliver et al., 
2015). 
 
While kriging is effective for datasets with strong spatial autocorrelation, it requires careful 
variogram modeling and is sensitive to data quality. Creating a 3D grid can be time-consuming, 
and optimal kriging parameters depend on data characteristics, posing challenges for non-
geomodellers (Pyrcz et al., 2014). 
 
Conversely, machine learning techniques, increasingly accessible through commercial platforms, 
utilize various algorithms, such as convolutional neural networks and tree-based models, to 
identify patterns in data. These methods offer flexibility in modeling complex relationships and are 
generally more user-friendly, although they may require more data and computational resources, 
with uncertainty quantification not always directly provided. 
 
Methodology 

This study was conducted in an offshore area of the Campos Basin, northeastern Rio de Janeiro, 
Brazil, where water depths range from 50 m to approximately 2200 m. The project includes 220 
wells across various geological settings, featuring Turonian turbidites (Carapebus Formation) and 
Albian carbonates (Quissamã Formation) in the post-salt section, as well as Aptian carbonates 
(Lagoa Feia Formation) in the pre-salt section (Winter et al. 2007). 

For geostatistical modeling, the spatial covariance structure of density from well logs was 
analyzed and fitted using a variogram. This allowed for the interpolation of values at unsampled 
points with weights derived from the covariance structure. Density logs from all 220 wells were 
upscaled into a 3D grid skeleton divided into nine zones, as outlined in Table 01. Given the 
established relationship between velocity and density (Gardner et al., 1974), seismic interval 
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velocity volumes served as a secondary variable in a cokriging method to enhance density 
property interpolation, even in data-scarce areas (Azevedo & Soares, 2017). 

For the machine learning density model, we employed the Fast Tree method, an efficient decision 
tree model based on gradient boosting (Ke et al., 2017). This model utilized seismic interval 
velocity from select wells to train the density log, estimating it for all available wells. Once the 
model reached the desired accuracy, it was used to estimate volumetric density properties directly 
from the interval velocity volume, avoiding the need for a 3D grid. Additionally, measured density 
logs were conditioned to estimate the shallow non-logged sections, following the approach 
described by Brocher (2005). 

Results 
 
Model results for kriging interpolation and machine learning methods can be inspected in Figure 
01.A and Figure 01.B, respectively, display a cross-section of the studied area. According to 
Figure 02, extracted logs from each model are displayed jointly with measured density and 
corresponding filtered version for a few wells. 

 
Table 01: Structure of 3D grid presented the delimitation of each zone and the correlation between 
measured density log versus kriging density log and measured density log versus ML density log 
for each zone.  

As a specific quality control factor for kriging interpolation, the histogram of data distribution 
displays that density property follows the general trend of the input data (well logs), indicating a 
reasonably controlled interpolation process, although some artifacts are visible. Also, kriging 
propagated the property across zones without overburden control, which was highly structurally 
controlled instead of by depth. In turn, the ML model presents a precise overburden control 
displaying smoother results where the presence of artifacts was minimized (note that the model 
is strongly influenced by interval velocity, which is controlled by overburden). Also, metrics from 
the trained model can be analyzed in terms of how good the model predicts the data. R squared, 
Mean Absolute error (MAE), and Root-mean squared error (RMSE) should be enough to evaluate 
the efficiency of a model driven by data (Boutayeb et al., 2025). Thus, the final trained model 
achieved R² = 0.92, MAE = 0.04g/cm³, and RMSE = 0.07g/cm³, which indicates the model's high 
confidence in describing the relationship between its variables with minimal error. Lastly, the 
correlation coefficient (R) and the determination coefficient (R²) were calculated between the 
measured density versus the kriging density model and ML density model extracted in each well 
position. These parameters were calculated for each zone created in the 3D grid for all 220 wells 
available, and it can be inspected following the scheme of Table 01 in the correlation column. 

Analyzing the well response of models, kriging density logs present higher values for R & R² than 
ML density logs for each analyzed zone - salt layer assumed halite a constant value of 2.1 g/cm³ 
for both models, according to Yamamoto et al. (2019). As in the kriging model, all 220 wells were 
used to propagate density property, explaining the high correlation because geostatistical 
interpolation methods depend on a high amount of data to increase accuracy (Azevedo & Soares, 
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2017) while ML methods do not require it. Ingesting a high quantity of data will overfit the model, 
generating a biased result. About 5% of wells were used here, and representative ones were 
chosen regarding water column depth and main target. ML results are generally smaller than 
kriging; however, they present high accuracy and can reasonably represent the relationship 
between velocity and density. 

Conclusions 

 
Both models were developed from a regional perspective to define the main density trend 
distribution across a large area, anticipating a wide range of values. Kriging interpolation is well-
suited for datasets with clear spatial correlations but requires expertise to develop a well-defined 
variogram, which can be complex. In contrast, machine learning methods are flexible and user-
friendly, effectively managing large amounts of complex data, making them accessible to 
geoscientists. However, they can be computationally demanding, especially with extensive 
datasets. Ultimately, the choice of method depends on the specific problem and data 
characteristics. In this case, the ML model effectively captured depositional aspects, with 
distribution influenced by the overburden, yielding reliable results with less effort. 
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Figure 01: Density model calculated through kriging interpolation (A) and ML method (B). Figure 
01.A, distribution histogram of input and modeled data displays the behavior of data. In Figure 
01.B seismic interval velocity jointly with regression statistics can be inspected respectively for 
QC purpose.  
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Figure 02: Overview of a set of wells displaying respectively measured density, ML estimated 
density and kriging density logs jointly with its correspondent filtered log.  
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