
Abstract

We present in this paper a method to analyze seismic data in the compressed domain which measures 
the variance of the wavelet coefficients as a function of the scale of the transformation. After applying 
resistivity logs, acoustic impedance logs, and 3D seismic data around a Eocene, clastic  reservoir, we sho
coefficients themselves contain relevant information about the subsurface that can be used for seismic
classification without having to through the reconstruction process.

 INTRODUCTION

During the last six years, there have been significant advances in the use of the discrete wavelet transfor
seismic data (Bossman and Reiter, 1993) (Donoho and Ergas, 1995) (Reiter and Heller, 1994). Comp
above 100:1 have been obtained without loosing significant geophysical information. Most efforts in qu
losses have been focused in comparing original vs. reconstructed data in a variety of ways which ran
comparisons to detailed statistical measures (Ergas, 1996) However, little effort have been made, as far a
examining whether the wavelet coefficients from which the data are reconstructed contain by thems
information about the subsurface without having to go through the reconstruction process.

We show in this paper a method borrowed from the biomedical literature (Akay, 1997)  wavelet based fr
that can be used to analyze the information contained in the wavelet coefficients themselves. We first te
with resistivity logs recorded in two wells that penetrate shally and sandy environments respectively, a
variation of the variance of the coefficients with scale shows distinctive behaviors depending of the dom
around the each well. Then, we repeat the process with acoustic impedance logs from the same pair o
seismic data that covered a larger area, and obtain responses that can be used also for facies classificat
suggests it may not be necessary  to reconstruct the data to obtain information about the subsurface
attributes for instance, since such information may be already contained in the wavelet coefficients in th
domain.

 WAVELET BASED FRACTAL ANALYSIS (WBFA)

The wavelet transform is a very useful tool in the analysis  of nonstationary signals due to their ability to re
at various scales. In particular, on the of the most promising application has been the analysis of the
physical process across different scales.

In a interesting and novel approach Akay (1997) used the technique of Wavelet Based Fractal Analysis (W
computation of the fractal dimension of heart-sound waveforms. Akay's  analysis consisted in the cal
variance of the wavelets coefficients (the detailed signals)  and plotted versus scale on a log-log plot. At e
detailed signals are assumed to be stationary. Regions of linearity in this kind of plot correspond  to a pow
over a particular region of frequencies, with the exponent of the power law process being related  to the s
(Percival and Guttorp,1994).

Figure 1 shows Akay's original analysis performed on heart-sound waveforms showing the effect of the c
disease. The normal heart sound waveform contain less high frequency energy than the abnormal
performed on both signals reveals larger variances at all scales for the abnormal heart-waveform. Moreove
of the variance with scale follows different power-laws for each case which, according to Akay, suggests th
devising electronic instruments capable of helping physicians detect coronary ischemia in its early stage.
suggests also the possibility of using WBFA to classify geophysical signals (well logs and seismic traces
the geological features being sampled. Next section explores this idea in detail.
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WBFA of synthetic seismic traces

We checked whether the reflectivity series of each well responded differently to the WBFA depending on the dominant
lithology of the target around each well. Figure 4  shows the result, which indicates it is still possible to recognize different
lithologic characteristics using the reflectivity series in this area.

To generalize this result to surface seismic frequencies, we performed WBFA on synthetic seismic traces obtained after
convolving the reflectivity series with a set of eight Ricker wavelets with central frequencies ranging from 20 to 256 Hz.
We computed the slope and intercept of the line that best fitted the  variance of the wavelets coefficients vs. scale for
each synthetic trace. Figure 5 shows the results.  For large frequencies, we obtain differences in slope and intercept
between  wells A and B. Differences in slope decrease as the central frequency decreases until lines become parallel at
20 Hz.  Differences in intercept remain for all frequencies.

Results of Figure 5 indicate the methodology of classification of compressed surface seismic data based on  slope and
intercept that result after WBFA will be more robust as the frequency increases. For low frequencies, only differences in
intercept will be significant.

When generating synthetic data, we also generated random, acoustic impedance logs (not shown).  The results of the
WBFA on such random logs  did not  exhibit the straight line behavior shown in Figures 2 and 4 that we obtained when
analyzing the real  resistivity and impedance logs. The behavior of the log-log plots for the random, synthetic well logs
was  erratic.

.

Fig. 5:  WBFA  intercept - slope graph  showing  the  separation Fig. 6: WBFA for the traces closests to wells A and B.
between two facies for different levels of seismic resolution.Cen-
tral frecuency of the synthetic traces  range from 20 to 256 Hz.

WBFA of compressed, 3D seismic data

To map the extension of different facies in the reservoir, we used the  WBFA slope-intercept methodology to classify the
3D seismic data in a time window around the zone of interest. According to the results of Figure 5, we did not expect to
see large differences in the slope of the lines after performing WBFA for traces around  each well,   since the frequency
content of the 3D seismic data we used in this study varied only between 15 and 35 Hz.  The result of the WBFA for the
closest traces to wells A and B shown in Figure 6 confirmed this hypothesis: both lines are almost parallel and the
separation is not as clear as when using well logs. However, when we performed the analysis for the 25 traces closest to
each well, we obtained that slope and intercept of the different straight lines clustered in almost disjoint sets (Figure  7),
which means the differences  in the signals that WBFA reveals, even though subtle, are consistent and independent of
random noise.  This result is significant and suggests the WBFA slope-intercept scheme could be a valuable tool for
facies identification using compressed seismic data

Figure 8a  shows a coherency slice (Bednar, 1998) around the zone of interest. Notice the presence of a channel
crossing the area. The result of  classifying each trace of the 3D seismic data around the zone of interest using the
WBFA slope-intercept methodology is shown in Figure 8b. The channel indicated in the coherency slice turns out to be,
as expected, filled with  sand. White areas in the map of Figure 8b could not be classified as either shale or sand.
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Fig. 5:  WBFA slope-intercept result for the 25 traces closest Fig. 8: facies classification map using WBFA.
to each well .                   

CONCLUSIONS

We have presented a methodology, wavelet based fractal analysis (WBFA), to analyze the variance of the wavelet
coefficients of compressed seismic traces  at different scales. When applied to well logs, the method  is able to to
discriminate properties of signals recored in areas with different shale and sand content. Even though the discriminating
power of the method diminish for low frequency seismic data, useful results can still be obtained when applied to  the
problem of facies recognition using compressed data.

In this particular study, we found that two parameters  that result from the WBFA, slope and intercept, were enough to
classify the different facies. In other cases, slope and intercept may not be sufficient and we may need to use  the
variance of each scale of the wavelet transform without assuming a straight line model.

The results of this study suggest it may not be necessary to reconstruct the compressed data to obtain useful information
about subsurface properties from the seismic data.
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