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Introduction

There exist different expressions for seismic attenuation. We want to compare some of these models by
doing parameter estimation on a zero-offset VSP dataset. The attenuation models are the Kolsky-Futterman
model (Kolsky. 1956: Futterman, 1962), the standard lincar solid model (Ben-Menahem and Singh. 1981).
the power law (Strick, 1967), Azimi’s second and third law (Azimi et al., 1968). the Cole-Cole model (Cole
and Cole, 1941), Miiller’s (1981) model and Kjartansson’s (1979) model.

[n the modeling scheme we have used the geometric ray approximation (Ursin and Arntsen. 1985). for
point-source, vertical wave propagation in a 1-D viscoelastic medium with plane wave reflection coetti-
cients. Amundsen and Mittet (1994) used the same modeling algorithm to invert for complex velocities in
aset of layers using zero-offset VSP-data. They did inversion with respect to each frequency component of
the complex velocity. Our approach is to assume a formula for the complex velocity and then invert for the
parameters in a few homogeneous layers. The inversion algorithm has been tested on a VSP-datasct from
a well in the North Sea for different attenuation models, By minimizing the error energy we estimate the
parameters in the different models.

Modeling and inversion algorithm

We consider wave propagation in a stack of viscoelastic layers in the vertical direction (normal to the
layering), and we use the geometrical ray approximation described by Ursin and Arntsen (1985). Since we
do not know the overburden effects, we shall use the modeled data
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where P(z.w) is the recorded data set at =, £(zy. w) is the normalized geometrical spreading. and
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are the incremental normalized geometrical spreading and traveltime, respectively. The complex propaga-
tion velocity. A( =z, w), is decomposed into phase velocity, ¢z, w), and attenuation, o (2, w). as tollows
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Note that ¢(z.w) and o (2. w) are even and positive functions of w.
In order to estimate parameters in a homogeneous layer. we take P(zq. w) at the top of the layer and
compute the normalized error criterion
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The sum is taken over receivers in the layer and discrete frequencies in the data frequency band. In the
following we estimate the unknown parameters in several seismic attenuation models by minimizing the
error criterion above,



VSP data set

The VSP dataset consists of 114 seismic traces. The source in the experiment was located at 4 meters
depth, 40 meters of horizontal distance from the well. Between 2900 meters and 4000 meters, 101 traces
were collected, as shown in Figure 1. The ratio between the horizontal distance of the source and the depth
of the geophones is about 1 %. For this reason the experiment is considered to be zero-offset. Three dis-
tinct layers can be detected between 3000 meters and 4000 meters by considering the amplitudes of the first
arrivals, as shown in Figure 2. The slope of the curve indicates three different values of the attenuation co-
efficient, with interfaces at 3335 meters and 3650 meters depth. The sampling rate in the dataset is 1 kHz
and the time window is ranging over 6 seconds. Since we restrict ourselves to the first arrivals, we use a
smaller time window of 250 milliseconds in the inversion. The velocity is about 3000 m/s.

Numerical results for different attenuation models

For cach attenuation model we estimated the parameters in the three ditferent layers for which the data
were recorded. The minimum values of the relative error energy A 7/ E are given in Table 1 for the different
models which will be described below.

The complex velocity for the Kolsky-Futterman model is given by
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where wi = 27 fy. For all the layers we fixed f;, = 50 Hz, and minimized the error energy while varying

the parameters (y and ¢o. The optimal parameter values were Qo = 28 and ¢y = 3000.7 m/s for the first
layer, Qy = 114 and ¢y = 3000.5 m/s for the second layer, and (0o = 35 and ¢y = 2999.7 m/s for the third
layer.

The complex velocity for the standard linear solid is given by
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We found the minimum error energy for the layers by fixing the parameter 7, for cach layer and varying
the parameters 7, and ¢y. The optimal parameter values were 7p = 3.8 - 1072 s, ¢g = 3000.8 m/s and
7= 4.16 - 1073 s for the first layer, 7y = 3 - 107 s, ¢y = 3000.5m/s 7. = 9.2 - 107" s for the second
layer, and 7, = 3 - 107" s, ¢p = 2999.9m/s and 7, = 4.3 - 107" s for the third layer.

The complex velocity for the power law is given by
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The minimum error energy was found by fixing the exponent y and varying a and ¢, for cach of the layers.
The optimal parameter values were v = 1.2, ¢ = 3000.7m/s and a = 2.05 - 105 m~! for the first layer,
v = 1.4, ¢y = 3000.5m/s and @ = 2.25- 10~  m~" for the second layer, and y = 0.9, ¢y = 3000.0 m/s
and @ = 7.95 - 107° m~! for the third layer.
The complex velocity for Azimi’s second law 1s given by
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The minimum error energy was found by fixing 4, and varying a and ¢ for each of the layers. The optimal
parameter values were Jy = —1.1 - 107%s, ¢p = 3000.8 m/sand a = 4.40 - 107° sm~ ! for the first layer,
Gy = —1.5-10"%s, co = 3000.5m/sand a = 1.25- 10~% sm~! for the second layer, and 3, = 0.5 - 107"
s, co = 2999.9m/s and @ = 8.30 - 1079 s~ ! for the third layer.

The complex velocity for Azimi's third law is given by
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The minimum error energy was found by fixing 33 and varying a and ¢, for cach of the layers. The optimal
parameter values were F3 = 5 -107° s1/2 ¢y = 3000.7m/s and @ = 5.85 - 107% stn~! for the first layer,
Gy = 3-1079512, ¢, = 3000.5m/sand a = 1.45-10~%sm ™" for the second layer, and 35 = 1.0-107%s'/2,
co = 3000.0m/sand @ = 5.12-10~°% s~ for the third layer.



The complex velocity for the Cole-Cole model is given by
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The minimum error energy was found by fixing 7, and b, and varying 7, and ¢, for each of the layers. The
optimal parameter values were 7o = 3.8 - 1072 s, ¢g = 3000.7m/s, 7. = 4.05-107? sand b = 0.55 for the
first layer, 7p = 3.0 - 107" s, ¢p = 3000.5 m/s, 7. = 5.75- 107" sand b = 0.75 for the second layer, and

7 =3.0-107%s, o = 3000.0m/s, 7. = 3.6 - 10~* sand b = 0.20 for the third layer.

The complex velocity for Miiller’s model is in the high frequency approximation is given by

| 1

— = —¢

Aw) Co
The minimum error energy was found by fixing v and varying wq and ¢ for cach of the layers. The optimal
parameter values were v = 0.321's, ¢p = 3000.7m/s and wy = 4.4 - 1073 s~ ! for the first layer, y = 0.361
s, cp = 30005 m/sand wy = 1.1-10~% s~ for the second layer, and v = 0.263 s, ¢ = 3000.0 m/s and
wo = 1.7-107* 57! for the third layer.
The complex velocity for Kjartansson’s model is given by
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The minimum error energy was found by varying 4 and « for each of the layers. The optimal parameter
values were v = 1.26and « = 1.5-107% m~! for the first layer, y = 1.88 and « = 4.4 - 10~ mi~! for the
second layer, and v = 0.72 and @ = 2.0 - 107° m~! for the third layer.

Conclusions

From Table 1 itis seen that all models give good fit to the data. The error energy is almost the same for
all models, but there is some variation between the layers. The best fit is obtained for layer 3 while layer 2
gives the worst fit. Azimi’s second model gives the best fit in all layers.
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Figure 1: Corrected seismic traces.
1.2 1600
[O)]
xe)
2 o} 1550 |
Q »
§ . E 1500}
© 0.8 + ()]
@ €
N = 1450}
g 06| %
<Z’3 = 1400}
04|
1350} ;
\
02t 1300 | ‘
2800 3000 3200 3400 3600 3800 2800 3000 3200 3400 3600 3800
Depth [m] Depth [m]

Figure 2: The normalized amplitudes of the first arrival (Ieft). The arrival times of the first arrival (right).
The dashed line corresponds to ¢ = 3000 m/s.

Model Layer 1 | Layer 2 | Layer3
Kolsky-Futterman 0.045 0.069 0.040
Standard linear solid 0.046 0.066 0.042
Power law 0.045 0.067 0.040
Azimi’s second model | 0.045 0.066 0.039
Azimi’s third model 0.045 0.067 0.039
Cole-Cole model 0.046 0.066 0.041
Miiller’s model 0.047 0.070 0.040
Kjartansson’s model 0.045 0.066 0.040

Table 1: The normalized error energy, AL/ E.
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