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Abstract

Forward modeling of ground-penetrating radar is developed using a simplistic 2-D algorithm based on the finite
element method. To keep the problem fully two-dimensional, a line-source of current is used to simulate the
antenna. The finite element computation is done in term of the scattered electric field produced by two-
dimensional lateral variation of electric conductivity, dielectric permittivity and magnetic permeability with
respect to a background-layered earth. Comparison of normal incident synthetic radargrams for 1-D and 2-D
environments with and without losses is analyzed to get insight about the resolution of GPR data.

INTRODUCTION

Ground-Penetrating Radar (GPR) has been applied in a variety of shallow high-resolution geophysical investigations
such as: identification of buried hazardous wastes, soil mappings, groundwater studies, archaeology, geo-technical
analysis and technical police investigation. Most of the forward GPR modeling has been done with ray-tracing technique
borrowed from seismic. Modeling GPR data by solving electromagnetic boundary value problems has been restricted
mostly to 1-D structures. The purpose of this paper is to introduce a simple 2-D GPR modeling algorithm based on the
finite element method. To keep the problem as simple as possible we use as “antenna” an infinite line-source of electric
current parallel to the strike of the 2-D structures (see Schoolmeester et. al., 1995). To simulate the shape of the radar
antenna pulse a 500 MHz sinusoidal response having a 3/2 cycle pulse width is used. The problem is solved in
frequency and wave number domains and transformed back to space and time domains via FFT.

THE ALGORITHM

At the ground surface, the time-domain electric field ey(x, O, t) is given by the Fourier transform of the corresponding
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frequency-domain field Ey(x, 0, w),

In order to calculate the frequency-domain electric field Ey(x, O, w) it is computationally convenient at the outset to
decompose the field in its primary and secondary components. The primary component is associated with the layered
earth, denoted background model, and the secondary component is the scattered field produced by two-dimensional
lateral heterogeneity hosted within the layered earth. Thus, we can write,

Ey(x,O,w) = E§’ (x,O,w)+ Ej(x,O,w),
in which the primary field is given by (Wait, 1962),

P — Mwi Uoho 2
= - '!:Uo 1+ Ry )e"" cos(k,x)dk,, o)

where I(w) is the spectrum of pulse in the line-source, Ro = (Uo — U1F1)/(uo + uiF1) is the reflection coefficient at the air-
earth interface, up = (k2X - wzuf)so)l/z and uy = (k2X + iwtb(oy + iouel)l/2 are the propagation constants above and just below
the ground surface. The stratification coefficient F1 in the expression of the reflection coefficient Ro is obtained by the
recursion formula,
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starting with Fn = 1 at the lowermost layer (see Figure 1). The term ho is the height of the line-source above the surface.
The secondary field is given by a boundary value problem involving the Helmholtz equation,
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in which the source term (Ao+iwAg)E,” is the density of primary electric current at the positions where the electrical
properties (electric conductivity and dielectric permittivity) departure from those of the layered earth. Dirichlet
homogeneous boundary condition is imposed at great distance from any lateral variations of electrical properties.

The primary electric field Ey(x, z. ) included in the above-mentioned source term is given by

Er = —|wpol J.uo[ -u(g) , Quile )]euoho cos(k, x)dk, , 5

where the coefficients E; of the jth-layer containing the two-dimensional heterogeneity is given by the recursion formula

u h
E =E. (1+R)Zh , j=12..N-1,
1+Re
E, = Enas1+ Rysy), i=123

starting W|th Eo=1. In the reflectlon coefficient Rj = (uj — uj+1Fj+1)/(uj + uj+1Fj+1), the propagation constants are expressed
by u; = (k + iwpb(o; + |wq) % and the stratification coefficients F;j.1 are obtained by the recursion formula (3).
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Figure 1. Geometry of the primary or background model.

The Helmholtz equation (4) can not be solved analytically. Thus, we content with numerical solution. We chose the finite
element method for its simplicity and flexibility to handle complex models (Strang and Fix, 1972). After dividing the
domain (a finite portion of the region where the solution is thought) in small triangles, denoted elements (see Figure 2),
this technique consists of using linear basis functions at each element to interpolate the desired solution using the
Galerkin variational formulation equivalent to (4).
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Figure 2. Central portion of the finite-element mesh.

For each triangle Q° we may write, after applying the Galerkin’s rule, the element matrix and the element source vector
as following

_ ;pwiaw oW, oY, 2123
i JEHGX 92 o xdz+|w;JOJ'a+|ws)kPW dxdz, i,j =123
and
f, =—iquI(Aa+iaAs)E§Widxdz i=123,
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after using the continuity of the tangential component of the electrical field at the element boundaries. These element
matrices and source vectors are assembled to form the global system of linear equations. After incorporating the
Dirichlet homogeneous boundary condition at the edge of the domain, the global system of linear equations is solved to
given the secondary field at each node of the finite-element grid.

Finally, at the ground surface, this secondary field is added to the primary field (2) to produce the total field at the
frequency domain. The radar trace for each line-source position is obtained by inverse Fourier transform using FFT of
the total field.

RESULTS

To show the performance of the above-mentioned algorithm we carried out a set of simple experiments. Let us consider
the models shown in Figure 3. The model 1-D is simply a three horizontal layer earth with thicknesses equal to 2, 1 and
3.5 meters over an infinitely thick basement. The model 2-D is a variation of model 1-D with the interface between the
second and third layers dipping from the left toward the right side. With these two models we performed three
experiments varying the electric conductivity and relative dielectric permittivity of the layers accord to Table I.
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Figure 3 - Model 1D (left) and Model 2D (right) used in the experiments.

TABLE | - Conductivities (siemens/m) and dielectric constants used in the model 1D and 2D.

O1 €1 02 €2 O3 €3 O4 €ra
Experiment 1 0 7 0 5 0 10 0 20
Experiment 2 0.001 7 0.002 5 0.01 10 0.005 20
Experiment 3 0.002 7 0.005 5 0.01 10 0.005 20

For the first experiment we made the conductivity of each layer equal to zero. Thus, we neglected the losses. The
corresponding zero offset radargrams are shown in Figure 4a and 4b. For both models, we clearly observe the signature
of each layer. In these results, the most interesting feature is the upward inclination of the signature of the horizontal
interface between the third layer and the basement of the model 2D. At first glance, this upward migration caused by the
thickness enlargement of the upper layer looks suspicious. Nevertheless, if we analyze it more carefully it can be
explained easily. Indeed, we know that the electromagnetic velocity in a lossless medium is given by c/y€; where c is the
velocity of light in the vacuum (0.3 m/ns) and & is the relative permittivity of the medium. With this simple formula we
can compute the zero offset arrival time as shown in Table Il. The total time for the three layers at the left and right sides
are respectively 123.96 and 114.70 ns, which are very closed to the values observed on Figure 4b.

TABLE Il - Arrival times for layered earth models at the left and right sides of the model 2D.

Layer & v (m/ns) Left side Right side
Twice the Time (ns) Twice the Time (ns)
thickness (m) thickness (m)
1 7 0.11339 4 35.28 4 35.28
2 5 0.13416 2 14.90 5 37.26
3 10 0.09487 7 73.78 4 42.16

In the second experiment we include the losses (see Table I). The first and second interfaces still can be clearly
identified on the radargrams of Figure 5a and 5b. The lowermost interface, however, is no longer observed. In the third
and last experiment we increased lightly the conductivities of the first and second layers (see Table Il), therefore
increasing the losses. We still can see the upper two layers in the model 1-D (Figure 6a). However in the model 2-D the
left side (the deeper one) of the second interface is barely seen on the radargram of Figure 6b. As before, the lowermost
interface is completely obscured.

CONCLUSIONS

Despite its simplicity and idealist conception, the algorithm it is very effective for forward modeling of two-dimensional
GPR responses. Very complex two-dimensional earth can be easily analyzed because the flexibility of the finite element
technique. Losses can be easily incorporated in the model. Magnetic permeability can also be included effortlessly. The
next step is to use a more realistic antenna, for example, a finite length horizontal electric dipole. In this case the model
is known as 2.5 dimensional and it will be much more involved computationally, of course.
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Figure. 4 Radargrams of Model 1-D (a) and Model 2-D (b), losses excluded (01 = 02 = 03 = g4 =0 S/m)
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Figure. 5 Radargrams of Model 1-D (a) and Model 2-D (b), losses included (o1 = 0.001, o> = 0.002,
03 =0.01 and 04 = 0.005 S/m)
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Figure. 6 Radargrams of Model 1-D (a) and Model 2-D (b), losses included (g1 = 0.002, o2 = 0.005,
03 =0.01 and o4 = 0.005 S/m)
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