
ABSTRACT

The inverse kinematics problem of seismology in a plane is here considered in the general case, when a velocity
of a propagation of wave depends on two variables. In addition, it is also considered the situations when a
reflection, a refraction and caustics for a field of rays are present. For example, from the geophysical point of
view, some of these results can be used for the analysis of velocity distribution between wells. Theoretically,
one can obtain the mean value of the velocity, for example, for the earth's crust, but for this it is necessary a
large amount of data, giving information of arrivals times, source-receiver coordinates, wave type, which
requires a network of seismic stations and sources that is practically not simply reliable.

THEORECTICAL FOUNDATION: Travel-time and eikonal equations

Let D be a plane domain with a piecewise smooth boundary D∂ . In D, we consider an isotropic Riemannian metric

dsyxnd ),(=τ ,        22 dydxds += .                                                                 (1)

We denote by ),( zlk  the geodesic of the metric τd  with extremes l and z on the boundary. We choose the coordinate
system on D∂ . For this, we choose an orientation (a direction) in D∂  , fix some point O on D∂  and for any point A on

D∂  we define a distance l between this point A and point O . The number l is the coordinate of A. The number z is the

coordinate of another point on D∂ . Let K be a family of all geodesics ),( zlk  of the metric τd  in DDD ∂∪= . Suppose

that K satisfies the following two conditions: (a) any two points in D  can be joined by a unique geodesic ),( zlk ; (b) any
geodesic ),( zlk  has exactly two points l and z on D∂ . Call such a family K of geodesics as regular. Note that the

condition (a) follows a convexitivity of D relatively to a metric τd . In other words, for every (l,z) ∈  D∂ × D∂ , a geodesic

),( zlk  exists. From condition (b) follows that in D  the closed geodesics do not exist. An example of such domain with a
metric τd  is in Figure 1. Another example is a circle with n(x,y)=constant, and consequently the geodesics are rectilinear
segments. The length ),( zlτ  of the geodesic ),( zlk  is expressed by the formula

∫=
),(

),(
zlk

ndszlτ ,   (l,z) ∈  D∂ × D∂ , ),( zlk  ∈  K.                                                        (2)

In this paper we considered the following inverse kinematics problem of seismology. Let the lengths ),( zlτ in (2) be

known for all (l,z) ∈  D∂ × D∂ . It is required to determine the metric (1), that is the function n(x,y). In the mathematical

aspect  we have the following problem. We consider the equation (2) with respect to the function n(x,y), (x,y) ∈  D . In
addition, also the geodesics ),( zlk  are unknown, and they are expressed by the unknown function n(x,y). As a result we

have a non-linear integral equation (2) relative to the function n(x,y). In seismology, the function ),( zlτ  is the propagation
time of the perturbation from the source (an explosion, or an earthquake) located in a point l, to the receiver located in
the point z. The function n(x,y), slowness, is related to the velocity v(x,y) of propagation of the particular wave type in the
medium D  by the formula  n=1/v. In the case when D is a circle (Earth's section), and the function n(x,y) is only depth
dependent in the geophysical problem (2), the classical Herglotz-Wiechert’s formula is applied. In our present case, the
interest increases for problem (2), or other like problems, when the function n(x,y) depends on both coordinate variables;
therefore this situation is here considered. Geodesics is clearly a ray trajectory.
For problem (2) the uniqueness and the stability were obtained in reference [1]. We present briefly now this result. Let us
consider two problems as in (2) in the same domain D:

∫=
),(

),(
zlk

ii

i

dsnzlτ ,   for i=1,2, (l,z) ∈  D∂ × D∂ .

We denote ),(),(),( 21 zlzlzlw ττ −= .

Theorem 1: Stability. If ),( yxni  ∈  )(3 DC , ),( zliτ  ∈  )(1 DDC ∂×∂ , then for the solution of the problem (2) we have the

stability estimate
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∂
∂−≤−

L L
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dldz
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dxdynn
00

2
21 2

1
)(

π
,    where DL ∂= .                                                     (3)

For discussion on the proof of theorem 1, we introduce the function

∫=
),,(

),,(
zyxk

ndszyxτ ,   for (x,y) ∈  D , z ∈ D∂ , or (x,y,z) ∈  DD ∂× ,

where k(x,y,z) is an arc of a geodesic which joins the points (x,y) and z. For fixed z, the function τ(x,y,z) is known in the
calculus of variations as a field base function. It is known that the function τ(x,y,z) satisfies the eikonal equation

),(222 yxnyx =+ττ .                                                                            (4)

Now we write other necessary formulas for the function τ(x,y,z). Using a connection between vectors and covectors, we
have that

θτ cosnx =    and   θτ sinny = ,                                                                     (5)

where ),,( zyxθθ =  is an angle of a direction of geodesic k(x,y,z) at the point (x,y). The following equality

),(cos yxnsinyx =+ θτθτ                                                                          (6)

is easily obtained from (5). From the properties of the field base function ),,( zyxτ , the derivative of ),,( zyxτ  along a ray
front is equal to

0cos)( =+− θτθτ yx sin .                                                                              (7)

Differentiating the equality (4) with respect to z, we get

0)( 22 =+
∂
∂

yxz
ττ ,   for DDzyx ∂×∈),,( .                                                                 (8)

The function ),,( zyxτ , when Dlyx ∂∈=),( , is the known function

),( zlτ ,   DDzl ∂×∂∈),( .                                                                         (9)
Equation (8) is a nonlinear hyperbolic-parabolic equation. It is easy to show that problem (2) is equivalent to the problem
of determination of the function ),,( zyxτ , satisfying equation (8) and a condition (9) on a solid torus DD ∂×∂ . Calculation
of (3) is performed by methods of energy estimations, using equation (8). The detailed proof of theorem 1 can be read in
reference [1]. The analysis of the proof of the theorem 1 is now completed. At the present time it is not known, but it is
possible to try to construct numerical methods for determination of an approximate solution for equation (8).

Theorem 2: Uniqueness. If ),( yxn  ∈  )(3 DC , ),( zlτ  ∈  )(1 DDC ∂×∂ , then the problem 2 can have only one solution.

Proof. The theorem 2 is the corollary of the theorem 1. Let in the theorem 1 ),(1 zlτ = ),(2 zlτ , then w(l,z)=0. In (3) the

statement  ),(1 yxn = ),(2 yxn  and theorem follows.

Using analogous methods as previously, we obtain the following theorem.

Theorem 3: Formula for the Riemannian volume in the regular case. If ),( yxn  ∈  )(3 DC , ),( zlτ  ∈  )(1 DDC ∂×∂ , then
we have the following formula for the Riemannian volume (see Figure 1)

∫ ∫∫∫ ∂
∂

∂
∂−=

L L

D

dldz
zl

dxdyyxn
0 0

2

2
1

),(
ττ

π
.                                                            (10)

Poof. We rewrite (8) in the form of

0)cos( =+
∂
∂≡ θτθττ sin
z

L yx .                                                                 (11)

In addition, we denote by L the differential operator in the left hand side of above equality (11), and reduce by the factor
),( yxn . The following identity is valid:

0)()()]cos)(cos[()()cos(2 22 =+−−+
∂
∂++≡+− xzyyzxxyyxyxzyx sinsin
z

Lsin ττττθτθτθτθτττθτθτθτ .           (12)

To prove (12) it is sufficient to remove parentheses in the right hand side to get the left hand side. Zero in the second
equality follows from (11). Substituting (7) in (12) we get 0[...] =∂∂ z . Thus

0)()()( 22 =+−+ xzyyzxyxz ττττττθ .                                                                 (13)

Applying the Gauss–Ostrogradskii formula to (13), we get

dldzdxdydz
L

z

L

lzyx
DD

∫ ∫∫∫∫ −=+
∂× 0 0

22 )( ττθττ .

Using (4) in the last equality, the formula (10) is obtained and the theorem 3 follows. Note that in (13) the first derivatives
have integrable singularities in the neighborhood of the points (x,y)=z.

REFLECTION OF RAYS FROM A BOUNDARY

We consider now a situation when rays k(x,y,z) are reflected from part of a boundary D∂ . Let D be a ring, i.e., a domain
D enclosed between two circles 11 BD =∂  and 22 BD =∂  with radii 1r  and 2r , respectively, and 1r > 2r , D∂ = DD 21 ∂∪∂ .

The metric τd  and the domain D must be such that there is a family K of geodesics, which we define below. Both ends
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of every geodesic k(l,z) belong to D1∂ . If a geodesic has a point on D2∂ , then it is reflected from D2∂ . As we consider

the geodesics in every point (x,y) ∈  D in all directions, then the family K has geodesics that are tangent to D2∂ . The

geodesics that have no points on D2∂  are smooth. Note that, if for a pair of points l  and z ∈  D1∂ , a geodesic ),(1 zlk

exists and ),(1 zlk is smooth, then with these extreme points l and z a geodesic ),(2 zlk , that has a point on D2∂ , at

which it is reflected, exists, i.e. the points  l and z ∈  D1∂  join two geodesics ),(1 zlk  and ),(2 zlk . Certainly, exits pairs of

points d and f ∈  D1∂  with extremes d and f  that the geodesic does not exist. It means that the closed domain D∪ D∂  is

not convex relatively to the geodesics of the metric τd . An example of such domain with a metric τd  is in Figure 2.

The Euclidean metric  222 dydxd +=τ  and a ring D satisfy all enumerated conditions as in Figure 3. The example of

Figure 2 is suggested from seismology. The domain D is the terrestrial crust, D1∂  is the earth's surface and D2∂  is the

Moho surface, or the mantle interface. For domain D with a boundary   DDD 21 ∂∪∂=∂  we have an analogous result as

in theorem 3.

Theorem 4: Riemannian volume with reflection. If ),( yxn  ∈  )(3 DC , ),( zliτ  ∈  )(1 DDC ∂×∂  for i=1 the function,

),(1 zlτ corresponds to a smooth geodesic ),(1 zlk  and, for i=2, ),(2 zlτ  corresponds to a geodesic ),(2 zlk  with an

incident ray and the reflected ray from D2∂ , then we have the formula of the Riemannian volume (see Figure 2)

∫ ∫∑∑∫∫ ∂
∂

∂
∂−−=

==

L lp

l

ii

j

j

i

i

D

j

dzdl
lz

dxdyyxn
0

)(2

1

2

1

2
)1()1(

2
1

),(
ττ

π
,                                                        (14)

where l, p(l) are the ends of the geodesics k[l,p(l)] that is tangent D2∂ , LD =∂ // 1 .

Remark 1. In formula (14) we are able to consider a boundary D2∂  as unknown, then a domain D is unknown. Thus,

with an unknown domain D, and an unknown metric 2/122 )( dydxnd +=τ , with known times ),( zliτ , i=1,2 for a

propagation between the points l, z ∈  D1∂  we are able to calculate the Riemannian volume for the domain D.

Remark 2. The formula (14) is valid also for a simply connected domain D with a boundary D∂  divided into two smooth
parts D1∂  and D2∂ , i.e., DDD 21 ∂∪∂=∂ , and the boundaries of D1∂  and D2∂  must coincide; that is, DD 21 ∂∂=∂∂ . In

addition, as in theorem 4, every geodesic ),(2 zlk has the incident ray and the reflected ray. (See Figure 4).

Proof. The theorem 4 is proved analogously to theorem 3 with the use of Snelliu’s law. Here it is important to show that
in (14) the integrals along the boundary D2∂  and geodesics that are tangent to D2∂  disappear. The formula (14) is

found in reference [2].

FORMULAS FOR AN AVERAGE METRIC

From theorem 3 (formula 10) we are able to get a formula for [n(x,y)] for the mean square value of the metric
2/122 )( dydxnd +=τ  (for the function n(x,y)):

2/1

0 0

2/12/12`/2def
)()

2

1
()),(()],([ ∫ ∫∫∫ ∂

∂
∂
∂−== −

L L
ii

D

dldz
lz

Ddxdyyxnyxn
ττ

π
.                                             (15)

where /D/ is an Euclidean area of the domain D. If in the formula (14), in addition an area /D/ is known, then an
analogous formula to (15) is obtained, which is :

2/1

0

)(2

1

2

1

2/12/12`/2def
))1()1(()

2
1
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∂

∂
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−
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ττ

π
.                            (16)

APPLICATION TO WELL-LOG SEISMIC TOMOGRAPHY

We consider the above results to a well-log geophysical application for the analysis of the medium between drilled wells.
All the stated results are valid for the domain D with a piecewise smooth boundary. The domain D is convex relative to its
metric. Let D be a rectangle with the sides a, b, c and d. The side a corresponds to the earth’s surface, b and d are the
lateral sides (drilled wells), and side c is the base of the considered domain. We enumerate below source-receiver arrays
for the experiments in different problems, where the obtained above results apply.
Problem 1. There are sources and receivers in every point of the boundary dcbaD ∪∪∪=∂ .
Problem 2. There are sources and receivers in every point of the sides cbaD ∪∪=∂ , and only receivers in side d.
Problem 3. There are sources and receivers in every point of the sides baD ∪=∂ , and only sources in side c and
receivers in side d.
Problem 4. There are sources and receivers in every point of the sides baD ∪=∂ , and only sources in side d and
receivers in side c.
Problem 5. There are sources and receivers in every point of the side a, and only sources in side d and receivers in side
b, and from side c the geodesics are reflected. (See Figure 5).
Let the domain D be a triangle with the sides a, b and c. The side a corresponds to the earth’s surface.
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Problem 6. There are sources and receivers on side a, and only sources on side b and receivers on side c.

CONCLUSIONS

The obtained results are to be used in the following way. For problems 1-6 we obtain the mean metric, i.e. the function
n(x,y). With this information, together with some other geophysical complementary information, it is then possible to
arrive at some conclusions on the metric τd  of the domain D.

Analogous results in 3R  exist in the case of the Riemannian metric, where the obtained formulas are generalizations in
the case of refraction of the rays and in the case of presence of caustics.
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igure 1. Regular case. Earth's section without nucleus.

Figure 2. Internal refraction and reflection in D only.
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Figure 4. Simple tomography structure with 2 surfaces.

Figure 3. Constant velocity Earth.
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Figure 5. Well-log seismic tomography with 4 sides: earth's surface, 2 drilled wells
and formation discontinuity.
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