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ABSTRACT

In this paper we apply two maximum entropy (ME)
approaches to the inversion of geophysical data with
discrete data and discrete model parameters (Shan-
non, 1948; Burg, 1975). This formulation is based
on a probabilistic philosophy and on the concept of
entropy, where we do not make use of prior informa-
tion. It is defined an objective function which con-
tains the entropy of the model parameters, which is
then minimized under adequate constraints in order to
give the output estimate of the model parameters. The
tests with synthetic data corrupted with noise in trav-
eltime tomography show the promissing application of
the ME approach for the solution of ill-posed inverse
problems in geophysics. The results with ME are bet-
ter, when compared to non-truncated singular value
decomposition SVD. The Shannon’s algorithm conver-
gence is generally faster when compared to the Burg’s
ME method.

INTRODUCTION

The Newtonian physics, which dominated from the
17th to the end 19th century, described an universe
in which everything should happen precisely in accor-
dance with a law, and this universe was compact, orga-
nized, and all future should depend strictly on all past.
However, we cannot check by mean of our imperfect
experiments, if this or that set of physical laws is pas-
sible of verification up to the last decimal figure. The
Newtonian conception nevertheless, had to present
and express the physical process, as they had in fact,
be subjected to those laws. As a consequence, from
the middle of the last century a revolution with no fore-
going begun in the history of physics. This revolution,
based on the idea of a contingent universe, changed
the physical thought, and now instead to state that
some physical event will happen in any case, whatever
the conditions, one states that the event will happen
with an overwhelming probability.

The main idea of this process is the concept of en-
tropy, which can be defined in several forms. With the
increase of entropy, the universe, and all the closed
systems, tend naturally to deteriorate and loose the
clearness, to change from a state of minimum proba-
bility to another of maximum probability, from a state

of organization and differentiation, in which exist forms
and distintions, to a state of chaos. In the contin-
gent universe, the order is less probable. The role of
entropy is in such a way that Jaynes (1957), states
that entropy is a primitive physical concept, even more
fundamental than the concept of energy. The con-
cept of entropy was developed by Rudolf Clausius
from Germany, in the context of classical thermody-
namics and later the Austrian physicist Ludwig Boltz-
mann gave the statistical interpretation of entropy. The
concept of entropy was adopted from statistical me-
chanics when the Information Theory (IT) was founded
by Shannon and Wiener in 1948 (Shannon, 1948;
Wiener, 1961). Consider a source S emiting mes-
sages m1;m2; � � � ;mN with probabilities p1; p2; � � � ; pN
respectively (where p1 + p2 + � � �+ pN = 1). The infor-
mation Ii carried by each message is given by

Ii = log(
1

pi
); (1)

and entropy (H) is the average information of the
source:

H(S) =

NX
i=1

piIi = �

NX
i=1

pi log(pi): (2)

Burg (1975) introduced the following definition of en-
tropy within the framework of Spectral Analysis:

H =

NX
i=1

pi log(pi): (3)

It is interesting to find what is the distribution which
maximizes the entropy. Since entropy is a measure
of uncertainty, the probability distribution which gen-
erates maximum uncertainty will have ME. In the ab-
sence of prior information, Jaynes (1957), stated that
the ME is the less biased estimate from a given infor-
mation. In the context of prediction theory, the maxi-
mization of entropy is not the application of a physical
law, but merely a reasoning method which guarantees
that no arbitrary inconsistent assumption was used.
The maximization of entropy has been very success-
ful in a variety of applications including applied geo-
physics. Just to mention a few references, Rietsch
(1988) applied ME to the inversion of 1-D seismo-
grams, and Bassrei (1993) used a ME algorithm with
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continuous model parameters in traveltime tomogra-
phy. A proof of the consistency of the principle of ME
is given by Tikochinsky et al. (1984) where it is demon-
strated that the ME distribution constrained to average
values is the unique consistent induction from the data,
for any reproducible experiment. In the present work
no prior information is used. For underdetermined in-
verse problems where the prior information has a key
role, an extension of ME, called minimum relative en-
tropy can be used (Bassrei, 1990, 1991, 1994; Ulrych
et al., 1990).

MAXIMUM ENTROPY ALGORITHM 1 (SHANNON)

The ME method allows different aproaches and imple-
mentations. For instante, it is possible to work with
continuous model parameters (Bassrei, 1993) or dis-
crete model parameters, which is the approach used
in this work. When continuous model parameters are
used, one deals with the probability density function of
the model parameters, which are not always available
in practice. One the other hand, using discrete model
parameters with normalization there is a need to know
the total sum of this vector (model parameters), in or-
der to get the proportions. What we do here is to work
directly with parameters instead of their probabilities,
although this does not follow rigorously the entropy de-
finition.
In the discrete case, we consider that we haveM infor-
mations and N unknowns, so that the relation between
data and model parameters is given by

dj =

NX
i=1

gjimi; j = 1; : : : ;M: (4)

The objective function is given by

�(mi) = �

NX
i=1

mi log(mi) +

MX
j=1

�j

 
NX
i=1

gjimi � dj

!
;

(5)
where the �j ’s are the Lagrange multipliers. Optimiz-
ing the above equation we have that

@�

@mi

= �1� log(mi) +

MX
j=1

�jgji = 0; (6)

which gives a solution for mi:

mi = e
�1+

P
M

j=1
�jgji

: (7)

Substituting the solution mi in the equation (4) we have
that

1

e

NX
i=1

gjie
�1+

P
M

j=1
�jgji

= dj: (8)

This is a non-linear set of equations that can be solved
for instance by using the Newton-Raphson method. If

we develop dj through a Taylor’s series, we obtain after
the truncation,

dj = d0j +
@dj

@�l

����
�l=�0

(�l � �0): (9)

Defining
�dkj = dobsj � dkj ; (10)

��kl = �kl � �k�1l ; (11)

and the matrix

Rk
jl =

@dj

@�l

����
�l=�

k
l

; (12)

we get the linearized expression

�dkj = Rk
jl��kl ; (13)

and finally
��kl =

�
Rk
jl

�
�1

�dkj : (14)

The �j ’s are updated and are introduced in equation
(8) in order to obtain the estimated model parameters
from the ME method.

MAXIMUM ENTROPY ALGORITHM 2 (BURG)

The objective function is now given by

�(mi) =

NX
i=1

log(mi) +

MX
j=1

�j

 
NX
i=1

gjimi � dj

!
; (15)

where the �j ’s are the Lagrange multipliers. Optimiz-
ing the above equation we have that the solution mi is
given by

mi = �

1PM

j=1 �jgji
: (16)

Following the same steps of the last section we can
calculate the Lagrange multiplers and then have the
model parameters from the equation (16).

NUMERICAL SIMULATIONS IN TOMOGRAPHY

The traveltime along a ray path from a point P (source)
to a point Q (receiver) is given by the line integral

t =

Z Q

P

dl

v(x)
=

Z Q

P

s(x)dl; (17)

where t is the traveltime, v(x) is the velocity of wave
propagation in x, dl is the differential length along the
ray, and s(x) is the slowness [s(x) = 1=v(x)]. Since
the problem is non-linear, it is necessary to linearize
it, expanding the function t by a Taylor’s series, and
considering only the linear term. This yields

�t = G�s; (18)

where �t is the traveltime residual resulting from the
perturbation, �s is the slowness distribution residual,
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and G is a matrix which represents the distances be-
tween sources and receivers.

In our synthetic model (Figure 1) the medium is dis-
cretized in 100 blocks, where the velocity of the homo-
geneous model is 2000 m=s. There are two heteroge-
neous features: a low velocity layer of 1700 m=s which
represents a negative constrast of velocity of 15%, and
a limited body of 2300 m=s which by its turn is a pos-
itive constrast of velocity, also of 15%. The velocity
contrast is rather low in order to avoid many ray trac-
ing loops during the inverse procedure. The ray tracing
procedure is based on Schots (1990). We considered
a well-to-well acquisition geometry, with 10 sources in
the left hand side well and 10 receivers in the right
hand side well. This implies in a determined problem,
that is, there are 100 equations and 100 unknowns.
However due to the ill-posedness of the problem, the
rank of the tomographic matrix is far from 100! In fact,
Figure 2 shows the SVD inversion, using all singu-
lar values. We still can see the general structure of
the model, but the image also generated negative val-
ues for velocity! Truncating some values one obtains
a good result, but the decision of how many singular
values are worthy to be used is rather subjective. The
inversion with ME (Burg) is showed in Figure 3, where
we can see that the image is much better and is very
close to the true model. For the ME inversion we also
need to invert a matrix in each iteration for the update
of Lagrange multipliers. In order to make a better com-
parison we also used SVD for this purpose, but in this
case with all singular values, or at least with the max-
imum number of singular values that still allowed the
convergence of the ME algorithm. Thus, for the SVD
application inside the ME inversion, there is no a de-
mand for a subjective criterion concerning the selec-
tion of singular values. Figure 4 shows the conver-
gence speed for the two entropies, where � = 0:01 in
both algorithms. Note that the convergence is reached
in 10 iterations for Shannon’s entropy but 100 itera-
tions are not enough for the Burg’s one. It is important
to mention that the initial value for the Lagrange mul-
tipliers is not crucial, that is, they do not have a role
like prior information. In Figures 5 and 6 it is possible
to see the algorithm convergence, which is allways ob-
tained, for different initial values of the Lagrange multi-
pliers.

CONCLUSIONS

It was shown a stochastic technique based on a ME
principle to invert geophysical data. The estimate is
the solution of the minimization problem, and is consis-
tent with the input data. The ME solutions showed to
be generally superior than SVD. The Shannon’s algo-
rithm converges generally faster than the Burg’s one.
The present technique can be applied to underdeter-
mined systems (the case of the geophysical inverse
problems in general) as well as to determined and

overdetermined systems.
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Figure 1: True model, velocity in m/s.
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Figure 2: SVD reconstruction using all singular values.
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Figure 3: Maximum entropy reconstruction.
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Figure 4: Convergence curves for Shannon and Burg
entropies (� = 0:01).
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Figure 5: Convergence curves for different initial val-
ues of the Lagrange multipliers (Shannon).
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Figure 6: Convergence curves for different initial val-
ues of the Lagrange multipliers (Burg).
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