
Abstract

The seismic inverse problem involves the determination of the subsurface physical properties from data recorded a
surface. A subsurface response mathematical model can be constructed from a physical modeling of the subsurface
by a seismic source. This mathematical model has the subsurface physical properties as parameters and provides a
the sample data. This makes possible to compare the sample with the estimated data. A function is defined ov
parameter space that measures the error between sample data and its estimates. The inverse problem can then b
minimization problem of error function over the parameter space. Most geophysical inverse problems are highly non
rife with local minima. Classical approaches to this optimization problem are very sensitive to the choice of the initi
good starting solutions may not be available. If there is no basis for an initial guess, the theory of Bayesian Inferenc
alternative way to this question taking into account the prior information about the parameter space. The inverse
then be stated as an optimization problem whose goal is to maximize the a posteriori probability that the set of pa
a certain value once given the result of the sample. This problem can be solved by the Simulated Annealing (SA) me
a global optimization method that executes an oriented random search in the solution space. The SA method is a
solution of 1D seismic inverse problems. The SA performance using error measures with different norms is eva
inversion of an elastic model with additive random noise. Low order norm equalizes the components of the error n
gives more equal weight to different size errors. Moreover that attenuates the difference between sample and s
reducing the influence of each model parameter individually, preventing the undue bias of parameters. The effect o
order norm is the increasing of the SA convergence time and the augmented sensitivity to all parameters in the solu

INTRODUCTION

The earth’s subsurface, when excited by a seismic source, produces an elastic wave propagating through
propagation, this wave is subjected to reflections, refractions and diffractions which result in a distorted 
subsurface. The seismic processing with techniques as deconvolution and migration tries to remove the e
wave propagation, transforming the set of recorded seismograms in sections in depth, that is, spatial images
properties such as the compressional wave velocity.

The Seismic Inversion approaches this problem in a different manner. The geophysics have been
in the development of the Inversion Theory, since they need to infer the true values of a certain physical para
of the earth’s subsurface, but they are limited to use only data registered at the earth’s surface. From a phys
of the propagation of elastic waves through  the subsurface, a mathematical model can be constructe
variables the physical modeling parameters. For each specification of feasible values of these para
mathematical model produces an estimate of the data to be observed. The Inversion uses the data reco
estimates made by the model to infer the true values of the model parameters. A function is defined ov
parameter space that measures the error between the survey results and the estimates of the model. T
problem becomes an optimization problem of this function over the model parameter space.

The earth’s subsurface parameterization can be represented by vector X=(X1,...,Xn), X ∈ Rn. If s d
are recorded in a seismic survey, one might consider vector D=(D1, ... , Ds), D ∈ Rs, a generic element of the
Then X and D are random variables that assume the specific values of x=(x1,...,xn) and d=(d1,...,ds). Let G=
the subsurface mathematical model, where G is a vector function composed by s scalar functions Gi. Let de =
estimate of data d provided by model G as a function of parameters x. If measurement of data d is corr
additive random noise n, one can write

d = de + n = G(x) + n (1)
where n = (n1,..., ns) is a realization of the random noise N=(N1,..Ns) in which component Ni is supposedly 
and identically distributed.

The resolution of equation (1) is one of the most ambitious geophysics inverse problems. In a m
manner, x is a model parameter vector in which some of  its physical quantities are known. The inversion of
is usually realized by the use of an optimization method . One searches for x in order to solve the minimizatio

minx  f [ d , G(x) ] (2)
where f is the function that measures the error between data d and estimate G(x). The solution of proble
equation (2) provides the point x that minimizes the difference between data d and the model G(x) measures 
In most of geophysical problems, the equation (2) expresses a nonlinear inverse problem where the local

Simulated annealing performance using error
measures with different norms

Jorge Magalhães de Mendonça*, Paulo Léo Osorio**

*PETROBRAS SA / BRASIL

**DEE PUC-Rio
SBGf25999
t the earth’s
 when excited
n estimate of
er the model
e stated as a
linear and are
al model, and
e provides an
 problem can
rameters has
thod, which is
pplied to the
luated in the
orm, since it

ynthetic data,
f using a low
tion reached.

 itself. In its
image of the
ffects of the
 of the some

 participating
meterization

ical modeling
d having as
meters, this

rded and the
er the model
he inversion

ata samples
 data space.
(G1,...,Gs) be
 G(x)  be the
upted by an

independent

ore realistic
 equation (1)
n problem

m stated by
by function f.
ization of the



Jorge Magalhães de Mendonça ,Paulo Léo Osorio

S
i

x
t

h
 

I
n

t
e

r
n

a
t

i
o

n
a

l
 C

o
n

g
r

e
s

s
 o

f 
th

e
 

B
ra

z
i

l
i

a
n

 G
e

o
p

h
y

s
i

c
a

l
 S

o
ci

et
y

global minimum is made in the presence of a great number of local minima. In spite of its complexity, this equation does
not introduce an intractable problem, but demands the use of a priori information to be solved.

The classical approaches to the solution of nonlinear inverse
problems makes use of a starting solution x0. The solution is improved by
an iterative process, perturbing function G in vicinity of x0. This perturbation
about ∆∆∆∆x = x - x0 satisfies approximately a linear relation driving to the
resolution of a linear inverse problem at each iteration. From initial solution
x0, the process evolves decreasing the objective function, assuring the
condition of a  local minimum solution to the final solution obtained. The
localization of the global minimum solution depends entirely on having a
good initial solution which begins the process and leads it to the global
minimum solution. Observing the figure 1, one can note that only guesses
in the interior of the indicated interval, lead the process  to the global
minimum solution, while any other choice drives it to a local minimum
solution.

The method SA (Kirpatrick, 1983), which is a global optimization
method, makes a oriented random search over the solution space

permitting to overcome the absence of a good initial solution. The inverse problem is resolved by the method of SA. The
information a priori over the solution space is used to delimitate the searching space. The SA method aims to optimize
the a posteriori probability of the parameters assume a certain value, given the sample data as proposed by the
Bayesian Inference.

This study evaluates the SA performance by using error measures with different norms, decreasing the SA
convergence velocity and making the solution more sensitive to th parameter set (Mendonça, 1997).

ERROR MEASURES

The adequate choice of an error measure between the sample
data d and its estimate de provided by the model function has a
very important role in the SA performance. If  vectors d and de

are elements of a real Euclidian space with an internal product
<.,.> and using the norm L2, the expression h can be defined
by equation (3) (Porsani, 1993)

><+><
><

=
e,,

,2
h

dddd

dd

e

e
(3).

The use of the Schwarz inequality can demonstrate
that the values of h are contained in the closed interval [-1,1].
The expression h assumes value 1 when d = de and –1 when d
= -de. Another property of h is that it is sensitive to the
differences of amplitude and phase between these vectors. As
in elastic seismic inversion problems, amplitude and phase of d
and de must be equal, the expression h is nearly always used.

In a real Euclidian space with an internal product and usi
equation (4)
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Equation (4) suggests the possibility of a generalized expression h

of a vector as d be defined by ,d
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Let Rβ = 1-hβ, then maximize hβ is the same as minimizing Rβ.
There are some considerations than can explain the use

values in norm Lβ. Small β-values equalize the components of the

to different size errors. Moreover it attenuates the difference be
parameter individually. Another consideration can be made by ex
like functions for some values of β. Function Rβ shows a process o
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Figure 1 : The interval to a good initial
solution
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β by the use of a generalized norm Lβ. Let the norm Lβ

pressed by equation (5) :

.

 of a generalized norm Lβ. A first one is the effect of β-

 error norm edd − , since it gives more equal weight

tween d and de, reducing the influence of each model
amining figure 2. This figure shows the behavior of Rβ-
f smoothness as β-value is decreased, reducing the Rβ
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Figure 2 : The smoothness of a Rβ-like function
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-value variation for neighboring points. As at each iteration the SA solution moves among neighboring points, the effect of
the smoothness  is forcing the SA to visit an increasing number of solutions until it converges to a solution. These two
considerations motivate the expectation that the effect of using a small β would be the increasing of the SA convergence
time and the augmented sensitivity to all parameters in the solution reached.

THE EXPERIMENT AND THE ANALYSIS OF THE RESULTS

The SA is applied to the inversion of the synthetic seismic data generated by a 1D elastic model. The model parameters
are the compressional wave velocity VP, the shear wave velocity VS, the density ρρρρ and the vertical travel time ∆∆∆∆ττττ. These
parameters vary only with depth. The acoustic impedance I and the Poisson’s ratio σσσσ are derived as functions of the
other parameters by equations (6) and (7) : I = ρρρρ VP  (6) and σσσσ = ½ (VP

2-2VS

2) / (VP

2-VS

2) (7) . The I and σσσσ parameters are
employed only to the experiment result analysis. For a subsurface model with 7 horizontal layers, 64 plane wave τ-p
seismograms with a maximum ray parameter pmax of 0.36 sec/km and with a bandwidth of 15 to 40 Hz were used in the
inversion. The model included only primary compressional wave reflection with losses due to shear conversion, but did
not take into account internal multiples or converted phases. A random noise with uniform distribution was added  to
these seismograms. This noise was limited in value to 20% of the greatest amplitude in absolute value presented in the
original seismograms. The algorithm Very Fast SA (VFSA) as proposed by Ingber (1989) was chosen to implement the
SA method.

For the SA performance evaluation using error measures hβ, 10 runs of the VFSA taking β the values 2, 1, ½
and 1/10, in a total of 40 runs were realized. During all 40 runs,  the VFSA kept fixed its parameters with the cooling
processing lasting for 250 iterations visiting 100 solutions by temperature. The VFSA examined 25000 solutions at each
run.

The convergence time measures the time (or iteration) after that hβ-value approximates to vicinity of its final
value during the SA runs. For each hβ, the average curve of hβ-value in the 10 runs was computed and the number of the
iteration in which the hβ-value reached the 99% of its final value was considered  to determine the convergence. The
convergence then occurred after 25 iterations for h2, 53 for h1, 70 for h1/2 and 75 for h1/10. These results confirmed that
convergence time increased as β-value was decreased.

Table 1 : Percentage of  absolute deviations of the best solution parameters from the original parameters
h2 h1

Layer VP ρ VS I σ Total Layer VP ρ VS I σ Total
1 .00 3.80 3.80 1 .00 12.43 12.42
2 .42 8.07 4.65 7.61 .07 2 1.08 3.42 18.48 4.47 .28
3 .90 8.52 6.54 9.50 1.57 3 1.89 6.51 2.06 4.74 .04
4 .35 11.60 10.15 11.98 2.65 4 .65 2.41 8.53 1.77 2.26
5 .01 15.36 9.30 15.35 2.78 5 .11 1.99 8.70 1.87 3.02
6 .10 7.77 8.92 7.66 3.39 6 .04 1.73 14.96 1.77 7.00
7 1.13 15.99 .75 17.30 .12 7 .71 1.91 10.58 2.64 3.50

Σ% 2.91 71.09 40.34 73.20 10.57 198.1 Σ% 4.50 30.39 63.33 29.68 16.10 144.0
Max 1.13 15.99 10.15 17.30 3.39 17.30 Max 1.89 12.43 18.48 12.42 7.00 18.48

h1/2 h1/10

Layer VP ρ VS I σ Total Layer VP ρ VS I σ Total
1 .00 12.64 12.64 1 .00 .58 .58
2 .38 .43 16.81 .81 .19 2 .97 9.02 2.53 7.96 .02
3 .61 .69 7.94 .08 1.57 3 1.20 5.49 14.88 6.75 3.19
4 1.11 .49 4.70 .61 1.51 4 2.10 5.85 .14 8.07 .59
5 .01 4.64 5.32 4.65 1.64 5 .25 11.15 2.27 10.88 .82
6 .08 1.01 .75 1.09 .35 6 .41 10.12 9.63 9.67 4.51
7 4.16 .93 4.71 5.13 .18 7 5.98 18.61 9.24 11.51 1.12

Σ% 6.35 20.83 40.26 25.00 5.43 97.87 Σ% 10.91 60.82 38.70 55.42 10.25 176.1
Max 4.16 12.64 16.81 12.64 1.64 16.81 Max 5.98 18.61 14.88 11.51 4.51 18.61

The SA performance using error measures hβ was evaluated by the analysis of the best solution found among
the 10 solutions realized for each β-value. Table 1 shows for each hβ the absolute deviation percentage of the best
solution model parameters from the original ones. The statistics of the absolute deviation sum (Σ%)1 and the maximum
deviation (Max) were computed for the model parameters VP, ρρρρ, VS, I and σσσσ (the vertical travel time values are considered
known). These statistics are measures of the length of these deviations made with the use of the L1 and L∞ norms
respectively. Both statistics pointed out to the predominance of the compressional velocity value VP in the best solution
using the error measures h2 and h1, while the Poisson’s ratio  σσσσ and VP values using h1/2 and h1/10. As σσσσ is a function of VP

and VS, the predominance of these parameters can be interpreted that the solution has also become more sensitive to the
shear velocity values VS. The measure h1/2  has also influenced to make the solution more sensitive to the  density  values
ρρρρ, but the measure h1/10 did not produce the same effect. In fact, the best solution generated by the VFSA using h1/10 was

                                                          
1 In the table 1, the line indicated by Σ% shows the values to the sum of the absolute deviations and by Max the
maximum deviation.



Jorge Magalhães de Mendonça ,Paulo Léo Osorio

S
i

x
t

h
 

I
n

t
e

r
n

a
t

i
o

n
a

l
 C

o
n

g
r

e
s

s
 o

f 
th

e
 

B
ra

z
i

l
i

a
n

 G
e

o
p

h
y

s
i

c
a

l
 S

o
ci

et
y

not a good solution. The column named “total” summarizes the two statistics for all parameters. The measure h1/2

provided the best result and h1/10 the worst. Figure 3 compares graphically the best solution parameters with the original
ones.

CONCLUSIONS

The SA method has proved to be
a good method to provide
solutions to the inverse problems
that are highly nonlinear and are
rife with local minima. In this
experiment, the SA was applied
to the solution of 1D seismic
inverse problems and its
performance was evaluated using
error measures hβ.  The h1/2

produced the most sensitive
solution to all parameters. The
use of a low order norm L1/2

attenuates the difference between
the sample data and its
estimates, increasing the
convergence time of the SA and
preventing the undue bias of the
solution parameters. The h1/10 did
not show the same behavior.
Similar results are obtained by
Porsani (1993) using the method
of Genetics Algorithms.

This study allows no
generalization, since a rigorous
statistical analysis was not done.
However, it suggests certain
questions.  The decreasing of β-
value to ½ has provided the most
sensitive solution to all
parameters, but β-value 1/10 has
failed to produce a good solution.
This fact raises the question
whether exists an inferior limit to β-
value in which the SA method using h

The SA solution using h2 h
However the use of β-value greater th

The value of β has determin
provided a good estimate to VP, but no
producing an acceptable estimate to
wave velocity VP is very important to t
I is used in the reflectivity studies.
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Figure 3 : The best solution parameters and the original parameters
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