
Abstract

A three-dimensional (3-D) kinematic migration method is developed for layered media with variabl
layers and curved interfaces. Zero-offset traveltimes t0(x,y) and interval velocities obtained fr
borehole data are assumed to be known. The method is based on the integration of the suggeste
system. This system consist of five ordinary differential equations of the first order. Vertical coo
been taken as independent variable. The formulas obtained make it possible to derive the nec
conditions for the solution of the initial-value problem for ray tracing system. To obtain the in
should take into account the wave transmission at upper interfaces where raypath satisfy Snell's l
Snell's low for integrating of ray  tracing system variational calculation has been used. The migr
comprises the two-dimensional fitting of traveltimes, interval velocities and interfaces obtained 
sequence. For local fitting a polynomial of given order n of two variables is used. The suggested
been successfully applied to interpretation of CMP data obtained in north-west Syria. The depth
reflecting horizons are constructed.

INTRODUCTION

Complete 3-D dynamic migration of wavefields is rarely performed because it involves large data volume
weeks to moths of computation time, even on vector computers. 3-D kinematic migration was suggested 
instead of full dynamic wavefield imaging (Kleyn, 1977; Gjoystdal, 1981; Jakucowicz, 1983; Robinson. 198
Presently all available kinematic migration algorithms are based on the assumption that the velocity in the
constant or depends on only one vertical coordinate z. Traveltimes are assumed to be independent of azim
The purpose of this study is to develop the 3-D kinematic migration method and algorithm for layered med
velocities and curved interfaces and to apply this method to real CMP data.

THEORY

We will assume that a medium under study is layered one and the interfaces between layers are curve
traveltimes t0(x,y) for each of the interfaces zj(x,y), j=1, 2, ..., n, are assumed to be known from CMP
velocities are also known from CMP and log borehole data. Within each of layers with fixed number j the i
vj(x,y) is the arbitrary continuous function of horizontal coordinates x and y. At the interfaces zj(x,y) the 
has the jump discontinuities. The problem in question is the one of constructing the reflecting interfaces z
zero-offset traveltimes t0i(x,y) and interval velocities vj(x,y).
The problem under consideration can be formulated as one of integrating the following system of ordin
equations of rays
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where vj(x,y) is a function of the layer number j (j=0, 1, 2, ..., n) and horizontal coordinates x,y. Equations
ray trajectory x=x(z), y=y(z), the traveltime t along the rays; γ is the angle between the vector of the tange
the point (x,y,z) and z-axis and δ is the angle between the projection of this vector on the plane xy and x-ax
It is necessary to determine the initial conditions for the system (1), to find the solution of the initial valu
equations (1) and to determine from this solution the values x,y,z corresponding to the value τ=t0(x,y)/2, w
the zero-offset traveltime from the reflecting interface. Locus of reflection for all zero-offset rays is the mig
surface.
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Initial conditions: x(0)=x0, y(0)=y0, t(0)=t0, γ(0)=γ0, δ (0)=δ0 for the system (1) have the following meaning: x0, y0  are the
coordinates of the zero-offset ray at the plane z=0, t(0)=0 is the initial time and γ0, δ0 determine the initial direction of the
zero-offset ray. Formulae for the determination γ0 and δ0 can be obtain using eikonal equation, that gives
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where cosα, cosβ and  cosγ  are the direction cosines of the unit vector of the tangent to the ray on the point (x,y,z).
Introducing the notations: '
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and final formulae
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It should be emphasized that the right sides of equalities (6) can be determine from the experimental data and thus the
angles γ0 and δ0 are calculated.
In order to construct the second interface and the other more depth interfaces one should take into account wave
transmission at the upper interface according to Snell's low. For expressing Snell's low in three-dimensional case we use
the variational calculation. Consider Fermat's functional
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where σ  is a parameter, vu is a velocity in the upper medium, vb is a velocity in the bellow medium, the points A, B, C
are shown on the Figure 1.

                  

Figure 1 - Zero-offset  ray ABC  in  the medium with                        Figure 2 - Schematic illustration of generalization of
variable velocity and curved reflecting and refracting                         Snell's low in 3-D case  for  the curved interface and
interfaces; B is a point of refraction;  C is a  point of                          variable velocities in upper and below media.
reflection from the curved surface. G is a domain  of                          n  is a unit vector of normal to the refracting surface;
definition  of  the  zero-offset  traveltime  function                             a  is a unit vector of the tangent to the incident ray;
f(x,y,z)                                                                                                   θ, ϕ; γu, δu; γb, δb are angle coordinates of  vectors

                                                                                                                     n , a , b  accordingly.

In the variational problem under consideration B is the moving point on refracting surface f(x,y,z)=0. Using known
conditions of transversality at the point B one can obtain the connection between normal vector to the refracting surface
and vectors of the tangents to incident and refracted rays at point B (Figure 2). Conditions of transversality give the
following expressions of Snell's low
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The meaning of angles ϕ, θ; γu, δu; γb, δb are shown on the Figure 2. On refracting interface values γ and δ changed from
values γu=γj , δu=δj to values γb=γj+1 , δu=δj+1 and these new initial values that are need for integrating  the ray tracing
system (1) can be found in the explicit form from the Snell's low (6).
For integrating the equations (1) with the above considered initial conditions we must calculate values of functions
t0=t0(x,y), v=v(x,y), z=z(x,y) and their partial derivatives of x and y. Functions t0=t0(x,y) and v=v(x,y) are given in a tabular
form using experimental data. A function z(x,y) is to be determined by calculating the coordinates of the reflection points,
i.e. in a tabular form as well. Values of all these functions may contain errors, and we have to fit these data.
The problem can be formulated as the following one. There is a set of values of the function f(x,y) obtained
experimentally  inside the domain G(x,y). It is necessary to fit the values of function f(x,y) and to solve the interpolation
problem for any inner point (x0,y0) of domain G(x,y). For the solving the given problem the following known approach is
used. It is significant that the solution of the equations (1) must be obtained only in the local vicinities of the points where
values t0(x,y) are given. Therefore for the point (x0,y0) one can take the m nearest points where we have got
experimental data about the function f(x,y). The polynomial of given order n which passing through the m points is used.
The given approach allows to unify the processes of the fitting, interpolation and numerical differentiation into one
process. Coefficients aij of the polynomial
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are found as a solution of a problem of minimization of the expression
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where n is the given order of a fitting polynomial; f(xk,yk) are experimental data about the function f(x,y); m is the number
of data points (m>n); µk are the weighted coefficients for the points (xk,yk), where the values of function f(x,y) are given.
For the quantitative determination of µk the following approach is used. The point (x0,y0) receives the maximal value of
the coefficient µ=µmax and the points (xk,yk) receive the value µk decreasing linearly from the value µmax to 1 in
dependence with the distance rk between points  (x0,y0) and (xk,yk). The value µ=µmax is a parameter of approximation
determined from of a priori information about behavior of function f(x,y) inside the domain G(x,y).

REAL DATA EXAMPLE

The above described method of determination of the reflecting interfaces in three-dimentional media with variable
velocity is  applied to interpretation of CMP data obtained on the Latakia area in north-west Syria. On time sections
obtained for a set profile lines reflections from  five reflecting horizonts were recorded. The time their registration is the
range 0-2 s. At the Latakia area there are fore deep wels  where the seismic log was curried out. Using log data the
interval velocities were determined. RMS velocities obtained along the profile lines at 80 observation points were
transformed into interval velocities. These velocities are functions of the vertical time, but interval velocities determined
using log data are depended on depth z. Therefore it is necessary to transform dependencies vint(xi,yi,tij) into
dependencies vint(xi,yi,zij) for integrating the ray tracing system (1). Transformation is realized using the following
recursive formula
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where j is the layer number and values vij are not changed.
For each of layers with number j the interval velocity vj(x,y), partial derivatives v'ij(x,y), v'jy(x,y) and module of velocity
gradient are calculated. For layer 4, for example, within the area 9×9 km the minimal velocity values are equal to 3600-
3800 m/s and the maximal values 4400-4600 m/s accordingly. Horizontal gradient of the interval velocity is changed in
the range of 0,2-0,8 s-1.
On the Figure 3 the zero-offset traveltime map for the horizon 4 is shown and on the Figure 4 the migrated reflector
surface 4 is presented.
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Figure 3 - Zero-offset traveltime map for 4 of the 5                          Figure 4 - Reflector depth map for interface 4  corresponding
interpreted reflectors.  Times are in milliseconds.                              to the time map of  figure 3.   Depth are im meters.

CONCLUSION

A 3-D kinematic migration method for layered media with variable velocities and curved interfaces is presented. We use
all available information about the distribution of velocity in a medium under study just interval velocities from CMP data
along all survey lines and log borehole data. In each of layers the interval velocity depends on two horizontal
coordinates.
The problem of 3-D kinematic migration is formulated as a initial-value one of integrating the suggested ray tracing
system. The initial conditions for this system are obtained using eiconal equation. Obtained on the basis of variational
calculation the generalization of Snell's low for 3-D medium with curved interfaces and variable velocities in upper and
below media allows to take into account refraction of zero-offset ray on all interfaces obtained in downward sequence.
The proposed migration method can be used with any desired survey configuration. The input is data presented in zero-
offset traveltime form for each reflector to be migrated. The output is a depth map of the migrated reflector surface. The
method has been successfully applied to interpretation of CMP data obtained in north-west Syria.
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