
Abstract

In this paper, the reflection coefficient mapping is obtained by applying the geometrical spreading
the principal component of the zero-offset primary reflection wavefield. The seismic model is as
known and for tutorial reasons constituted by two-dimensional (2-D) homogeneous layers separate
curved interfaces. The geometrical spreading factor is then expressed by a function of 
eigenwavefront attributes, namely the curvatures of the normal incidence point (NIP) wave and th
wave. By applying to the same set of seismic data, the proposed reflection coefficient mapping
with the result of the zero-offset true amplitude diffraction stack migration algorithm and also w
value obtained by the plane wave reflection coefficient approximation.

INTRODUCTION

One of the most important problem in the seismic method concerns for finding the amplitude anomalies - 
a true amplitude processed seismic section. This is only possible if we have a method for mapping each
time domain into the corresponding reflection coefficient in the depth. In the last years, many works have
this problem (Hubral et al., 1983; Bortfeld and Kiehn, 1992; Schleicher et al., 1993 and Castagna, 1997). In
present a new technique for mapping the reflection coeficient at the subsurface from a zero-offset seismic
the assumption that the amplitude of the primary seismic reflection does not change too much with 
consider the high frequency wavefield, in the seismic exploration, is very good approximated by the so-ca
ray series solution. The principal component of the primary compressional wave in the zero-order ap
generally a complex quantity. In the zero-offet configuration, the primary reflections will always have the s
the source pulse or of its Hilbert transform, depending on if exist or not caustic along the ray. The inv
corresponds to zero-offset reflections, that are originated by normal rays at a curved reflector in a isotrop
medium. The wavefield is then represented by the formula (Cerveny, 1987)

U
R

L
C= ,                                                           

where U is the amplitude of principal component of the compressional wavefield, RC is the plane-w

coefficient which could be a complex value, and L is the geometrical spreading factor, with unitary sourc
without transmission loss.

THE REFLECTION COEFFICIENT MAPPING

For determining the reflection coefficient at each normal incidence point on the reflector from the zero-o
wavefield, we need only to multiply the amplitude of the principal component in equation (1) by a facto
geometrical spreading. As expressed by Hubral (1983), the geometrical spreading factor in the zero-offse
is expressed as function of the curvatures KNIP  and KN  of two eigenwavetronts of the normal ray pr

called NIP (normal incidence point) wave and normal wave, respectively. The NIP wave tunes the reflectio
1a), while the normal wave tunes the reflector itself (Figure 1b). The geometrical spreading factor of the no
ray is given by

L
K KNIP N

=
−
2

.                                                  

If the macromodel is a priori known, the two eigenwavefront curvatures can be forwards calculated by
depends on the normal ray parameters and the velocity model (Hubral and Krey, 1980). In the case tha
know the macromodel, these two curvatures could be obtained as solution of some inverse problem as
Muller et al. (1998). The zero-offset section, that is used as input data, can be simulated from a set of 
seismic sections by an optimized stack process. In this paper, for didatic reason, we only consider the s
the macromodel is  totally known. After determining these curvatures by using the assumed known ma
apply the obtained zero-offset geometrical spreading factor to the picked amplitude of the principal com
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primary reflection wavefield, resulting in the reflection coefficients through the reflector.

Figure 1-  Homogeneous model: a) rays defining the NIP wave that start at reflection point R. b) normal rays defining the
N wave that start on the reflector.

APPLICATION

In order to measure the accuracy of the proposed reflection coefficient mapping using the eigenwavefront attributes, we
have applied it to a set of seismic traces generated by the ray tracing algorithm SEIS88, within a zero-offset
configuration. We consider the macromodel constituted by the interval velocities 2500 m/s, 3000 m/s and the half-space
velocity 3500 m/s, separated by two arbitrary curved interfaces (Figure 2). We have also apllied to the same set of
seismic data, by considering the same macromodel, the well known true amplitude diffraction stack migration. The true
amplitude depth migrated seismic section is presented in the Figure 3. Both results are showed in comparison to the
exact values of the reflection coefficients in Figure 4, where we have the picked reflection coefficients as given by the
true amplitude migrated data and the result obtained by the eigenwavefront reflection coefficient mapping.

CONCLUSIONS

The presented reflection coefficient mapping procedure is called here eigenwavefront reflection coefficient mapping
method, because in order to determine the reflection coefficient we need to calculate the attributes of two eigenwaves -
NIP and Normal Waves. In practical point of view when the macromodel is not known a priori, these wavefront
parameters can be well determined by some inversion technique based on the seismic stack processing. In contrast with
the true amplitude Kirchhoff migration, the eigenwavefront mapping method does not use any integral operator for
obtaining the reflection coefficient. When compared with the true amplitude diffraction stack migration result, we can see
that both methods have the same accuracy in the central part of the model, but the last one suffer from border effect
(apperture) while the former does not present any problem of this nature.
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Figure 2 – Seismic Model and seismogram. Lower half: Heterogeneous model with curved interfaces and with zero-
offset normal incidence rays.  Upper part: Zero-offset seismogram. The wavefield corresponds to the principal
component of P-P reflected wave.
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re 3 – True amplitude depth migrated section obtained by the modified diffraction stack migration.

re 4 – Reflection coefficient at each normal incidence point on the reflectors a) first reflector and b) second reflector.
gray solid line corresponds to the exact reflection coefficients. The black cross line is obtained by using the

nwavefront attributes and  the circles line results from the true amplitude diffraction stack migration.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
pth

 (k
m)

Distance (km)

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

R
e

fl.
 C

o
e

ff
ic

ie
n

t

Distance (km)

a)

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

R
e

fl.
 C

o
e

ff
ic

ie
n

t

Distance (km)

b)


	volta: 


