
SBGF230

The Kirchhoff-Helmholtz transform pair

Martin Tygel(1), Jörg Schleicher(1), Lúcio T. Santos(1), and Peter Hubral(2)
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Abstract

Modeling a reflected wave by the Kirchhoff-Helmholtz integral consists of an integration along the reflector. By
this, one sums up the Huygens secondary-source contributions to the wavefield at the observation point. The
proposed asymptotic inverse Kirchhoff-Helmholtz integral, by which this modeling process is inverted, works in
a completely analogous way. It consists of an integral along the reflection traveltime surface of the reflector.
For a point on the reflector, one sums up the reflected-wave contributions present at the respective reflection-
traveltime surface associated with the related source-receiver pair. The new inverse integral reconstructs the
Huygens sources along the reflector, providing their positions and amplitudes. In this way, one can devise a new
true-amplitude migration algorithm.

INTRODUCTION

The wavefield originating from a point source and primarily reflected from a smooth reflector overlain by a smooth inho-
mogeneous acoustic medium can be described by the Kirchhoff integral in the so-called single-scattering, high-frequency
approximation (see, e.g., Frazer and Sen, 1985). The resulting Kirchhoff-Helmholtz integral describes then the reflected
elementary waves as a superposition of Huygens secondary point sources distributed along the reflector.
The Kirchhoff-Helmholtz integral is largely used to accurately model primary reflections in smoth layered models bounded
by smooth interfaces (reflectors). A natural question that arises is whether a transformation exists that performs the
opposite task of the Kirchhoff-Helmholtz integral. In other words, this inverse would have to kinematically and dynamically
reconstruct the reflector. This would have to involve a weighted superposition of the observed elementary wave along
the reflection traveltime surface of the searched-for reflector. To kinematically and dynamically reconstruct the reflector
means to asymptotically recover the reflector location together with the plane-wave reflection coefficient in each point of
the reflector. In the seismic literature, this is commonly called the true amplitude at all reflector points.
The depth migration method traditionally accepted as an inverse to the Kirchhoff-Helmholtz integral is Kirchhoff depth
migration (Schneider, 1978). This migration is realized upon summing up contributions of the reflection data along auxiliary
diffraction surfaces constructed on an a priori given reference model.
We see that the Kirchhoff-Helmholtz integral, a summation operator along a given reflector, lacks a structurely similar
(asymptotic) inverse operation. This should have the form of a summation operation along the reflection traveltime corre-
sponding the reflector, assuming, of course, the same configuration of source-receiver pairs. This is being set up in this
paper by exploring the dual properties between the given reflector and its corresponding traveltime surface.

FORMULATION OF THE PROBLEM

The Kirchhoff-Helmholtz integral transformation pair is based on the following assumptions.
(1) Referring to Figure 1, we assume the model of a smoothly varying inhomogeneous acoustic medium, bounded above
by the measurement surface, z = 0, and below by the target reflector �. The reflector � is, for simplicity, assumed to be
parameterized as z = �(~x), in which ~x is the two-dimensional horizontal coordinate vector varying on the spatial aperture
set E. Points on the reflector � will be generally denoted by M� = (~x; z = �(~x)). (2) The locations of the source-receiver
pairs (S;G) are given as a function of a two-dimensional vector parameter ~� that varies on a given configuration aperture
set A. For each source-receiver pair, we suppose that there exists exactly one point MR = (~xR;�(~xR)) on the reflector
�, for which the composite ray SMRG describes a specular primary reflection. The dependency ~xR = ~xR(~�) implies that
the location of the specular reflection point MR is determined by the location of the source-receiver pair (S;G) specified
by ~�. We will denote by R(MR) the plane-wave reflection coefficient for the ray SMRG at MR. (3) The function t = �(~�)

describes the reflection traveltime from the source S(~�) to the receiver G(~�) along the primary-reflection ray SMRG. This
function is called the reflection-traveltime surface � of the target reflector �. Both surfaces are said to be dual of each other.
Points on the traveltime surface � will be denoted by N� = (~�; t = �(~�)). (4) For each point M� on the reflector �, we
correspondingly assume that there exists exactly one source-receiver pair (SR; GR) for which the composite ray SRM�GR

pertains to a specular primary reflection at M�. This pair (SR; GR) is parameterized by a fixed value of ~�R = ~�R(~x)
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depending on the horizontal coordinate ~x of M�. We will denote by R(M�) the plane-wave reflection coefficient for the
ray SRM�GR at M�. Also, the notation NR = (~�R;�(~�R)) will be used for a point on � pertaining to ~�R, i.e., to the fixed
source-receiver pair (SR; GR). (5) At any specified point S, on the measurement surface, we will consider an exploding point
source with a impulse-shaped source signal �(t). The effects of a limited bandwidth do not influence the present analysis
and need not be considered. (6) Finally, we assume reproducible point sources of unit strength and an omnidirectional
radiation pattern. We also neglect the transmission loss due to interfaces in the overburden. In addition, all other factors
affecting the seismic amplitudes apart from geometrical spreading are assumed to be negligible or have been corrected
for.
Under these assumptions, zero-order ray-theory provides the follow- t = T (�;MR)
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Figure 1: One-interface model together with aux-
iliary curves: isochrones and diffraction curves.

ing description of a primary reflected elementary wave. For each
source-receiver pair (S;G), the reflection event at the receiver is de-
scribed by

K�(
~�; t) = R(MR)=L �(t� �(~�)) : (1)

In the above formula, the amplitude factors R(MR) and L are
the plane-wave reflection coefficient at MR and the geometrical-
spreading factor pertaining to the specular reflection ray SMRG. Note
again that each pointN� on � is associated with exactly one pointMR

on �.
We see that K�(

~�; t) is aligned along the reflection-traveltime surface
� as defined above. We may say that K�(

~�; t) is the image of the
reflector � at the reflection-traveltime surface � in the time domain.
In other words, the image K�(

~�; t) describes what we can observe
about the reflector in the recorded reflected wavefield.
We next introduce the function I�(~x; z), which is aligned along the
target reflector �. For each ~x in E and all real z, the function I�(~x; z)
is defined by

I�(~x; z) = R(M�) �(z � �(~x)) ; (2)

Note that the function I�(~x; z) is the complex version of the singular
function of the reflector as introduced by Bleistein (1987). It is de-
fined here, however, in a true-amplitude sense, i.e., with the varying
reflection coefficient along the reflector as its amplitude. Moreover, in the same way as expression (2) is referred to as
the analytic singular function of the reflector, we can interpret equation (1) as the analytic singular function of the reflection
traveltime surface.

DIFFRACTION TRAVELTIMES AND SPATIAL ISOCHRONES

For arbitrary vector parameters ~� in A and arbitrary subsurface points M = (~x; z), we introduce the diffraction traveltime
surface

t = T (~�; ~x; z) = T (~�;M) = T (S(~�);M) + T (G(~�);M) ; (3)

namely the sum of traveltimes from the source-receiver pair (S;G) specified by ~� to the subsurface point M . The above
formula expresses the traveltime from the diffractor point M to the source-receiver pair (S;G).
The reflection traveltime surface t = �(~�) of the given refletor � can be, as a consequence, recast as

t = �(~�) = T (~�;MR) = T (~�; ~xR;�(~xR)) ; (4)

where the horizontal vector coordinate ~xR = ~xR(~�) locates the reflection point MR = (~xR;�(~xR)) on � determined by the
source-receiver pair specified by ~�.
We next consider the spatial counterparts of the traveltime functions defined above. For any ~x in E and arbitrary points
N = (~�; t) in the time domain, we introduce the isochrone z = Z(~x; ~�; t) as the locus of points MZ = (~x; z = Z(~x; ~�; t)) for
which the diffraction traveltime to a fixed source-receiver pair equal the given traveltime t, viz.

T (~�;MZ) = T (S(~�);MZ) + T (G(~�);MZ) = t : (5)

An important observation is that the reflector function z = �(~x) can be recast as a restriction of the above isochrone
functions, namely

z = �(~x) = Z(~x; ~�R;�(~�R)) ; (6)

where ~�R = ~�R(~x) is the vector parameter that specifies the source-receiver pair SR and GR for which the two ray segments
SRM� and M�GR constitute a reflection ray.
Diffraction traveltime surfaces t = T (~�; ~x;�(~x)), for fixed ~x, and isochrone surfaces z = Z(~x; ~�;�(~�)) for fixed ~� are
connected by duality relationships. The diffraction-traveltime surface for a point M� is tangent to � at a point N�. Cor-
respondingly, the isochrone surface for N� on � is tangent to � at M�. Also, further relationships between the dips and
curvatures of � and � in M� and N�, respectively, can be established.
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THE KIRCHHOFF-HELMHOLTZ INTEGRAL PAIR

The Kirchhoff-Helmholtz (KH) modeling integral, called from now on the forward KH integral, asymptotically computes the
singular function K�(

~�; t) of the reflection-traveltime surface �. Input to this calculation are the location of the reflector �,
the
velocity distribution in the reflector overburden, and the values of the
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Figure 2: The forward Kirchhoff-Helmholtz inte-
gral understood geometrically. For each point M�

on �, the integration contributes to the reflection
response computed for ~�R at the corresponding
point N� = (~�R; T (~�R;M�)). For details see text.

reflection coefficientR(M�) along �.
In a completely analogous way, the inverse KH integral to be defined
below, asymptotically computes the singular function I�(~x; z) of the
reflector �. Input to this calculation are the location of the reflection-
traveltime surface �, the velocity distribution of the reflector overbur-
den, and the wavefield amplitudeR(MR)=L along �.
Under the assumptions stated in the previous section, the forward KH
integral can be written as an integral along the reflector � in the form
(Frazer and Sen, 1985; Tygel et al., 1994)

K(~�; t) =
1

4�

Z
d�WK(

~�;M�) R(M�) @��(t� T (~�;M�)) ; (7)

where K(~�; t) is the modeled elementary wave at the receiver G(~�).
Also, @� denotes the partial derivative in the direction of the normal
to the surface � at M�. Under the above-mentioned assumption that
transmission losses in the overburden can be neglected, the weight
function is given by

WK(
~�;M�) = 1=LS LG ; (8)

whereLS and LG denote the geometrical-spreading factors along the
two ray branches from the source S to the point M� and from there
to the receiver G (see Figure 1).
Let us now investigate integral (7) more closely in order to better understand it geometrically. This will help us to set up an
analogous integral for its inversion. For the following discussion, we refer to Figure 2.
We start by considering a certain, fixed value ~�R, where we want to compute the reflected wave as a function of time. We
denote by MR the reflection point on � which corresponds to the source-receiver pair (SR; GR) defined by ~�R. The point
MR defines a diffraction traveltime surface that is tangent to the reflection traveltime surface � at a point NR = (~�R;�(~�R)),
called the dual to point MR. For each point M� on the reflector, integral (7) contributes to the final response K(~�R; t)

at a single point N� = (~�R; T (~�R;M�)), where T is defined in equation (3). In other words, N� is the point where the
diffraction traveltime surface t = T (~�;M�), cuts the vertical line at ~�R (see Figure 2). The point N� will fall onto �, i.e., it
will coincide with point NR, the dual point to MR, when M� coincides with MR. At NR, the diffraction traveltime surface
of MR, t = T (~�;MR), is tangent to �. We thus have a stationary situation at NR, which means that the main contribution
of integral (7) will be observed at that point. In other words, the forward KH integral (7) transforms the singular function
of reflector � into its image at �. The weight function WK(

~�;M�) serves to perform this transformation in a dynamically
correct way, i.e., yielding the correct wave amplitude and pulse shape at NR.
To set up a completely analogous integral that achieves the inverse task, namely to reconstruct the singular function of the
reflector � from its image at �, we only have to substitute in the above integral all points and surfaces by their respective
duals. This is geometrically described with the help of Figure 3.
The new integral will consist of an integration along the reflection-traveltime surface � instead of the reflector �. In analogy
with the preceding construction, we consider the output of the integration at a certain, fixed coordinate ~xR which determines
a (supposedly unique) dual point NR = (~�R;�(~�R)) on the reflection traveltime surface �. The isochrone specified by the
point NR will be tangent to the reflector � at the (supposedly unique) point MR = (~xR;�(~xR)). For each point N� on �,
the new integral has to contribute to the final result I(~xR; z) at a certain point M�. This point M� should be located at the
position where the isochrone of N�, z = Z(~x;N�) cuts the vertical line at ~xR, i.e., M� = (~xR;Z(~xR; N�)).
The point M� will fall on �, i.e., it will coincide with MR, when N� coincides with NR, the dual point of MR. At MR, the
isochrone z = Z(~x;NR) is tangent to �. Due to our above assumption of a smooth reflector and uniqueness of dual points,
we have again the situation of an isolated singularity at MR, which means that the main contribution of the new integral will
be observed at MR. In this way, we have geometrically constructed a transformation of the reflection-traveltime function
� into the reflector �. A certain weight function will be included into the integral in order to assure that also this inverse
transformation can be performed in a dynamically correct way, i.e., to correctly reconstruct the varying reflection coefficient
along the reflector �.
Translating the above observations in mathematical terms and in full correspondence to the forward KH integral, we can
now set up the following inverse KH integral,

I(~x; z) = �

Z
d�WI (~x;N�)

R(MR)

4�L
@��(z �Z(~x;N�)) : (9)
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where I(~x; z) is the final imaging result. In this formula, @� denotes, correspondingly to @� above, the partial derivative
in the direction of the normal to the traveltime surface � at N�. We recall that MR is the specular reflection point on the
reflector pertaining to the source-receiver pair (S;G) defined by ~�. From the asymptotic analysis of integral (9), the weight
function results as

WI(~x;N�) = hB v3 cos
2 � LSLG= cos

2 � ; (10)

where � represents the “local dip angle” of the reflection-traveltime surface � (i.e., the angle the normal to � at N� makes
with the vertical t-axis), and � denotes the incidence angle the incoming ray-branch slowness vector makes with the
isochrone normal at M (see Figure 3). Moreover, hB is the modulus of the Beylkin determinant (Bleistein, 1987). All these
quantities are computed for the actual point N�.
In mathematical terms, the two stationary situations mentioned above
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Figure 3: The inverse Kirchhoff-Helmholtz inte-
gral understood geometrically. For each point N�

on �, the integration contibutes to the reflector
depth image computed for ~xR at the correspond-
ing point M� = (~xR;Z(~xR; N�)). For details see
text.

relate to the following statements for the asymptotic integral results.
As is well known (see, for example, Tygel et al., 1994) the Kirchhoff-
Helmholtz integral (7) can be approximated, for time values t � �(~�),
by the zero-order ray-theoretical expression, viz.,

K(~�; t) � K�(
~�; t) = R(MR)=L(~�) �(t� �(~�)) : (11)

As indicated above, correspondingly, the approximation of integral (9)
for z � �(~x) yields in an asymptotic sense

I(~x; z) � I�(~x; z) = R(M�) �(z � �(~x)) ; (12)

i.e., the (complex) singular function of the reflector. This means that
integral (9) is the inverse to the forward KH integral (7), or, in other
words, integrals (7) and (9) form a transform pair between the depth-
domain image I�(~x; z) of the target reflector and its time-domain im-
age K�(

~�; t) in multi-coverage reflection data.

CONCLUSIONS

Based on the duality between reflectors and reflection time surfaces,
we have presented a new inverse Kirchhoff-Helmholtz integral that is
completely analogous to the forward integral. The inverse Kirchhoff-
Helmholtz integral fills a recently discovered gap which originates
from the observation that the conventional Kirchhoff migration inte-
gral (Schneider, 1978), well known in the seismic literature, is not an inverse to the forward Kirchhoff-Helmholtz integral.
The proposed inverse Kirchhoff-Helmholtz integral enables the design of a new seismic migration technique that would
deserve the name Kirchhoff migration much more than what is up to now associated with this name. The construction
of true-amplitude migrated reflector images by the new migration technique can be achieved by the superposition of their
elementary reflection images along the reflection-traveltime surface. In this way, the migration can be realized as a weighted
stack along the (identified and picked) reflection-time surface instead of stacking along the conventional diffraction-time
surfaces (computed on a whole region in depth). Of course, to recover the correct reflector position as well as to calculate
the weight function, both techniques require an a priori given velocity model of the reflector overburden.
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