
Abstract

In this paper I describe an approximate method to evaluate the kinematics of the MZO impulsive response in in
media. This method demands smoothness of the MZO impulsive response which, in turn, demands smoothness of the
For any fixed point on the MZO impulsive response, I show that its neighboring points can be recursively determin
first -order relations. Motivation for this is to save CPU resources that are usually required when ray-tracing te
employed. For homogeneous media, a comparison between the proposed method and a conventional one based o
showed considerable savings in computational. Choosing the initial point as corresponding to a zero temporal dip
event, the accumulated errors summed up to half the smallest period allowed by anti -(spatial)aliasing filters for usu
patterns. Deeper events demand a higher spatial sampling rate of the MZO impulsive response than possible wi
interval in regular seismic data.

INTRODUCTION

Pre-stack migration is generally required in geologically complex areas. For laterally varying velocity med
processing sequence NMO+DMO+pos-stack  migration fails since, in this case, the stacked section cannot b
simulated zero-offset section. This is because NMO is supposed  to work on vertically inhomogeneous med
was originally designed for constant-velocity areas. For arbitrary velocity media, MZO iis designed  to pro
zero-offset output simulated sections out of input common-offset sections in one step, thus substituting th
operations of  NMO and DMO.  MZO can be an attractive process if it can bring significant savings in comput
as compared to pre-stack migration. Usually, Kirchhoff MZO is accomplished upon the construction of arriva
that will be scanned to determine isochrons and their zero-offset  reflection times. This can become 
cosuming task. The method I describe here is an attempt to avoid traveltime tables and  searches.  This is do
consideration of simple, first-order relationship that exist between pairs ( )xt

ρ
,  in the MZO impulsive resp

expense of some accuracy,  starting from a single point on the MZO curve, all ( )xt
ρ

,  pairs in this curve can b
estimated using a first-order differential relationship. Amplitudes along the impulsive response are not discu
will be the subject of another work to introduce the true amplitude formulas given in Tygel et al (1996) to
approach.

A FIRST-ORDER RELATIONSHIP BETWEEN POINTS IN AN MZO IMPULSIVE RESPONSE

Following Deregowski et al. (1981), the kinematics of an MZO impulsive response in a common-offset se
estimated by means of a theoretical common-offset migration followed by demigration to zero-offset. The c
acceptable ray trajectories comes from the non-variability of time and offset (Artley et al, 1994). These v
functions of the ray parameter vectors p

ρ
 associated with the source and the receiver and the ray final po

( )zx,
ρ

. The position vector and traveltime of a reflection ray at the surface can be written as:
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where v  is the velocity, which is a function of the position ),( zx ′′ρ
, and )0,( ix

ρ
 is the starting point of

isochron in common vector offset h
ρ

2  section is characterized by the constant time 
ht
ρ  given by
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where the subscripts S  and R  stand for source and receiver, respectively and the constant (half) offset vect
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with Sx
ρ

 and Rx
ρ

 respectively the source and receiver positions. In equations (2) and (3)  the independent variables are

SXp , SYp , RXp , RYp  (for laterally varying velocity media this are initial ray parameter components) and z . However,

constraining the points ),( zx
ρ

to lie at the isochron in which 
ht
ρ  and h

ρ
are constants, the number of inpendent variables

is two. In differential form, we may, for instance, write RXdp , RYdp  and dz  as functions of SXdp  and SYdp .  This can be

done by inverting the system of equations
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The system formed by equations (4), (5) and (6) is ill posed in caustic regions.  Additional equations can also be found if
we consider the MZO distance vector from the CMP position vector, namely
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where the subscript 0 stands for zero offset. As a result of the application of Snell´s law, the zero-offset ray parameter
vector at the isochron can be written as
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which, in conjunction with equations (4), (5) and (6), yields the differential expressions
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Equations (9) and (10) constitute a system that can be inverted to obtain SXdp  and SYdp  as functions of MZOdx  and

MZOdy . This completes the cumbersome computations. All partial derivatives in equations (4), (5) and (6) are integrals to

be numericaly evaluated. This may become computationally demanding, especially for laterally-varying velocity media
where the ray parameter vectors will vary along the ray trajectory. The partial derivatives in equations (9) and (10) are a
result of a 3X3 system inversion (in the vicinity of caustics SVD analysis may be required). This does not impose much
computational effort. The 2X2 equation system (9) and (10) can be inverted (for instance, in constant velociity areas it will
demand SVD analysis) with even less CPU demand.

The algorithm to generate the kinematics of the impulsive response for a given input common offset sample comprises
the following steps:

1) For a given pair ( )CMPh xt
ρρ,  of the input common offset section, compute as accurately as needed (using ray tracing)

the pair ( )MZOxt
ρ

,0  for a particular zero-offset position MZOx
ρ

 and the corresponding source ray parameter vector Sp
ρ

.

2) Use the determined Sp
ρ

 to estimate all the partial derivatives found in equations (4), (5), (6), (9) and (10).

3) Determine Spd
ρ

 from a given MZOxd
ρ

, a chosen fraction of the CMP interval, and increment Sp
ρ

.

4) Determine ( )MZOxt
ρ

,0  for this new value of Sp
ρ

 and go back to step 2 until all points of the MZO impulsive response

have been obtained.
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A TEST FOR CONSTANT VELOCITY MEDIA AND COMMENTS

For the sake of simplicity, I compare the kinematic of the impulsive response as given by this method with the
theoretically known for constant velocity media. In this test, the velocity is 1500 meters per second and the offset is 2.0
kilometers.The comparison is made for two different zero-offset, zero-dip time. For the first one, at 1.5 seconds in Figure
1.a, the approximated curve was generated with an interval MZOdx  of 20 meters. For the second one, at 5.0 seconds in

figure 1.b, the approximated curve was generated with an interval MZOdx  of 1 meter. The variation in MZOdx  in figures

1.a and 1.b is a function of the curvature of the impulsive response. The greater the curvature, the lesser the necessary

MZOdx  for a better fit to the theoretical curve.  Problems are greater for greater temporal dips since the initial point was

the zero dip one.

Figure 1.a – A comparison between the theoretical and
the approximatted curves for a reflector at 1.5 seconds
in a 2.0 km common offset section, with a MZOdx  of 20

meters.

Figure 1.b – A comparison between the theoretical and
the approximatted curves for a reflector at 5.0 seconds
in a 2.0 km common offset section, with a MZOdx  of 1

meter.

I expect this process will gain in accuracy if schemes like Runge-kuta technique are employed. The main question to be
answered in this case concerns to the increase in CPU resource demands. The CPU demand to generate all the
impulsive response kinematics for a 5 seconds long trace was around 25% of that for the conventional approach using
tables of arrival times created with ray tracing. Preliminary considerations on the application of this method to several
different offsets yields to the same amount of CPU savings if tables with the values of the partial derivatives in (4), (5)
and (6) are created. But this is still to be tested.

CONCLUSIONS

An approximate method for estimating the kinematics of MZO impulsive responses for heterogeneous media was

theoretical

approximated

theoretical

approximated
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described. The MZO kinematics for constant velocity media estimated by this method was compared to the theoretically
determined one. Comparison shows that this method has its application range limited to a vicinity of the initial accurately
calculated point. This limitation varies with the increment in CMP positions. Higher accuracy is achieved with smaller
CMP position increment. This technique can be improved with more sophisticated schemes like Runge-Kuta with an
acompanied increase of CPU demand.
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