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Abstract

For a fixed, central ray in an isotropic elastic or acoustic media, traveltime moveouts of rays in its vicinity can be
described in terms of a certain number of parameters that refer to the central ray only. The determination of these
parameters out of multi-coverage data leads to very powerful algorithms that can be used for several imaging and
inversion processes. Assuming two-dimensional propagation, the traveltime expressions depend on three param-
eters. We present a new method to extract these parameters out of coherency analysis applied directly on the
data. It uses one-dimensional searches on different sections extracted from the multi-coverage data, followed by
a recently developed spectral projected gradient optimization algorithm. Aplication of the method on a synthetic
example shows an excellent performance of the algorithm both in accuracy and efficiency. The results obtained so
far indicate that the algorithm may be a feasible option to solve the corresponding, harder, full three-dimensional
problem, in which eight parameters, instead of three, are required.

INTRODUCTION

In the framework of zero-order ray theory, traveltimes of rays in the vicinity (paraxial) of a fixed (central) ray can be described
by a certain number of parameters which refer to the central ray only. The approximations are correct up to the second
order of the distances between the paraxial and central ray at the corresponding initial and end points. They are, thus, valid
independently of any seismic configuration.
Assuming the central ray to be the primary zero-offset ray, the number of parameters (emergence angles and curvatures
of certain wavefronts) are three and eight, for two- and three-dimensional propagation, respectively. For two-dimensional
propagation, the parameters are the emergence angle of the normal ray and the wavefront curvatures of the normal and
normal-incident-point eigenwaves as introduced in Hubral (1983). All parameters are defined at the point of emergence of
the central ray, called the central point. This point is, in general, a CMP point where the simulated zero-offset trace is to be
constructed.
The use of multiparametric traveltime approximations for imaging purposes is a well-investigated subject. Main contribu-
tions to the subject are the Method of Multifocus (see, e.g., Gelchinsky (1997) for a recent description), the Method of
Shifted Hyperbolas (see, e.g., de Bazelaire (1994)) and the very recent Common-Reflection-Surface (CRS) Method (see,
e.g, Hubral et al.. (1998) and Perroud et al.. (1999)). These methods vary in general on two aspects, namely (a) the mul-
tiparamentric traveltime moveout formula that is used and (b) the strategy employed to extract the traveltime parameters
from coherency analysis applied on the multi-covered data.
In this work, we present a new method for the estimation of the parameters for two-dimensional multi-coverage data.
It is based on (a) initial one-dimensional searches performed on different sections (CMP and CMP-stacked) and (b) a
recently introduced spectral projected gradient (SPG) optimization algorithm (Birgin et al., 1997) applied on common-
source sections. The method will be illustrated by its application on a simple synthetic example, where the various aspects
of the algorithm can be better understood.

HYPERBOLIC TRAVELTIME EXPANSION

Let us assume a fixed target reflector � in depth, as well as a fixed central point X0 on the seismic line, considered to be
the location of a coincident source- and -receiver pair S0 = G0 = X0. We also assume the two-way normal, zero-offset
reflection ray, X0R0X0, called from now on the central ray. It hits the reflector at point R0, known as the normal-incident-
point (NIP). For a source- and receiver pair (S;G) in the vicinity of the central point, we consider the primary reflected
ray SRG relative to the same reflector �. We use the horizontal coordinates x0, xS and xG to specify the location of the
central point X0, the source S and the receiver G. It is convenient to introduce the midpoint and half-offset coordinates
xm = (xG + xS)=2� x0 and h = (xG � xS)=2. We consider the hyperbolic traveltime expression as in Tygel et al. (1997)
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where t0 is the zero-offset traveltime and �0 is the emergence angle the zero-offset ray makes with the surface normal at the
central point. The quantitiesKN and KNIP are the wavefront curvatures of the normal N - and normal-incident-pointNIP -
waves, respectively, measured at the central point. For particular source-receiver gathers, the above traveltime formula can
be simplified. Of interest here are three configurations: the CMP (xm = 0), the zero-offset (h = 0) and the common-shot
(xm = h � x0) configurations. The CMP traveltime depends on the combined one parameter q = cos2 �0KNIP . The
zero-offset traveltime depends on the two parameters �0 and KN . Finally, the common-shot traveltime depends on the two
parameters �0 and � = KN +KNIP .
The strategy of using particular configurations to reduce the number of parameters to be estimated has advantages and
disadvantages. The main advantage is the sometimes significant reduction of computational effort. As a disadvantage,
less redundancy is made use for, as many traces that do not conform to the selected configuration have to be left out.

Initial Estimation Process

ZO Search

Step 1: one-dimensional search 
for β0 (fixing KN=0).

Step 2: one-dimensional search
for KN (fixing β0 from Step 1).

Step3: compute KNIP = q / cos2(β0).

CMP Search

One-dimensional searc  for
combined parameter q.

Optimization Process

Option 1: CS Optimization

Step 1: optimization on β0 and 
µ = KN + KNIP.

Step 2: compute KNIP = q / cos2(β0) 
and KN = µ - KNIP.

Option 2: CO Optimization

Optimization on KN and KNIP.

CMP gathers

CS or CO gathers

Simulated ZO stack

Intermediate β0, KN
and KNIP sections

q section

Multicoverage Data

Final β0, KN and 
KNIP sections

Coherency section

q section

Figure 1: Optimization strategy.

FORMULATION OF THE PROBLEM AND SOLUTION

The data obtained by a multi-coverage seismic experiment performed on a given seismic line consists of a multitude of
seismic traces U(xm; h; t) corresponding to source-receiver pairs located by varying coordinate pairs (xm; h) and recording
time 0 < t < T . The basic problem we have to solve is the following:

Consider a dense grid of points (x0; t0), where x0 locates a central point X0 on the seismic line and t0 is the
zero-offset traveltime. For each central point X0 let the medium velocity v0 = v(x0) be known. From the given
multi-coverage data, determine, for any given point (x0; t0) and velocity v0, the corresponding parameters �0,
KN and KNIP .

The general approach to solve this problem is to apply a multiparameter coherency analysis (semblance) to the data, using
the traveltime formula (1) to a number of traces U(xm; h; t) in the vicinity of the central ray X0 and for a suitable time
window around the time t0. The desired values of sought-for parameters will be the ones for which one achieves maximum
coherence when applying the traveltime (1) to the data.
Given the seismic traces U(xm; h; t), and the vector of parameters P = (�0; KN ; KNIP ), the semblance function S is

S =

P
[
P

U(xm; h; T (P ))]2

M
PP

[U(xm; h; T (P ))]2
(2)

where T (xm; h; P ) is given by equation (1), M is the total number of traces, the inner summing is performed over all traces,
and the outer one is performed over the time window around t0. For each pair (x0; t0) the objective is to find the global
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maximum of the semblance function (2) with respect to the parameters �0, KN andKNIP . These parameters are restricted
to the ranges ��=2 < �0 < �=2 and �1 < KN ; KNIP <1.
The strategy for computing the global maximum of the semblance function is described in Figure 1. It consists of two
main parts: At first, we aim at obtaining good initial values of the parameters; these will be used in the second part,
which is an optimization process to produce the final values. The first part consists of two steps (a) a one-parameter
search of the combined parameter q, performed on the CMP sections and (b) two one-parameter searches for �0 and KN ,
performed on the CMP-stacked section realized using the previous q-parameter. The CMP-stacked section is considered
as an approximate zero-offset section in these computations.
The optimization process of the second part determines the two parameters �0 and �. For this purpose, we use the
recently introduced Spectral Projected Gradient method described in Birgin et al. (1997). Finally, using the relationships
KNIP = q= cos2 �0 and KN = ��KNIP all the desired parameters can be determined.

A SYNTHETIC EXAMPLE

We consider the model of a single smooth reflector between two homogeneous acoustic half-spaces. Assuming unit den-
sity, the constant velocities above and below the reflector are v1 =2.5 km/s and
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Figure 2: Model and CS acquisition
geometry.

v2 =2.6 km/s, respectively. The input data for our experiment is an ensemble of
61 common-shot (CS) and 61 common-mid-point seismic sections. Figure 2 shows
the model and one of the common-shot experiments. The common-shot seismic
sections have 30 traces each. The sources (x0) lie in the range from 0 km to 0.6
km. The CMP seismic sections have 25 traces each, the mid points lying in the
range from 0 km to 0.6 km. In both cases, the time window is 0:4s � t � 9:11s. We
have added a colored noise of 20%. This was obtained by the convolution of white
noise with the wavelet used to construct the seismograms.
Figures 3a-c show the theoretical and estimated parameters after the Initial Estima-
tion Process. Figures 3d-f show the theoretical and optimized parameters. Compar-
isons between theoretical and optimized parameters are depicted in Figures 3g-i.
Figure 4a,b show the semblance sections before and after the Optimization Pro-
cess. These sections can be looked upon as simulated zero-offset images of the
reflector. They are called in Gelchinsky et al. (1997) semblancegrams. Finally,
Figure 4c shows the maximum semblance function values on the upper branch of the simulated zero-offset image of the
reflector before and after the Optimization Process.

CONCLUSIONS

We have proposed a new algorithm to determine the traveltime parameters out of coherency analysis applied on 2-D
multi-coverage seismic data. Using the hyperbolic traveltime approximation and a sequential application of simpler one-
dimensional searches followed by a two-dimensional optimization scheme, we were able to derive a very fast and accurate
method for the estimation of all sought-for parameters. We applied the algorithm to a synthetic example. Although the
application involves a simple one-reflector model, the obtained results were very encouraging. Next steps will be to test
the new algorithm to more realistic situations and to extend it to 3-D multi-coverage seismic data. These topics are under
current investigation.
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Figure 3: (a-c) theoretical (solid lines) and estimated (dots) parameters after one-dimensional searches. (d-f) theoretical
(solid lines) and estimated (dots) parameters after optimization process. (g-i) absolute errors between theoretical and pre-
(dots) and post-optimization (solid line) parameters.
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Figure 4: Coherency function evaluatead on CS gathers. (a) before optimization, (b) after optimization, and (c) pre- and
post-optimization over the reflector. See the great improvement in coherency fucntion value along the reflector.
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