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Summary

We present a beam implementation for 3D prestack Kirchho� depth migration of seismic data. Unlike conven-
tional Kirchho� migration in which the input seismic traces in time are migrated one at a time into the 3D image
volume for the Earth's subsurface, the beam migration processes a group of input traces at a time. The migration
of each group of traces, or supergather, consists of two major steps: slant stacking the traces into a � �P domain
beam volume, and mapping the beams into the image volume. Since the beam volume is much smaller than
the image volume, the beam migration cost is roughly proportional to the number input supergathers instead
of the number input traces. The computation speedup of beam migration over conventional Kirchho� migration
is roughly proportional to Ng, the average number of traces per supergather, resulting a theoretical speedup up
to two orders of magnitudes (10 � 100). The beam migration was successfully implemented and has been in
production use for several years in Amerada Hess Corporation. A factor of 5-25 speedup has been achieved in our
in-house depth migrations. The implementation made 3D prestack full volume depth imaging feasible in parallel
distributed environment.

Introduction

Kirchho� migration using raytracing or traveltimes is currently the tool of choice for 3D prestack depth imaging.
Kirchho� migration is extremely suitable for parallel implementation, partitioning both input and output volumes, or
targeting subvolumes. Due to the shear number of summations, Kirchho� migration is expensive. The exibility of
target-oriented processing helps when quick processing turn-around time is essential. However, in practice, interpreters
almost always prefer larger volumes during a prospect de�nition, compromising between the length of runtime, size
of the output, or sometimes, the quality of image.

We use the following well-known and rather general form (see e.g., Bleistein [1], H. Sun and Schuster [2] ) for the
Kirchho� migration image M(x) at subsurface point x,

M(x) =
X
xs

X
xr

Z
d!A(xs;xr;x; !) ~Psr(!) exp[i!(�s(xs;x) + �r(x;xr)]; (1)

where ~Psr(!) is the input seismogram in the circular frequency domain !, for the source at xs and receiver at xr,
�s(xs;x) is the traveltime from the source to the subsurface point x, �r(x;xr) is the traveltime from the subsurface
point to the receiver, and, A(xs;xr;x; !) contains geometric spreading information and factors necessary to generate
correct migration output amplitudes. The subscripts in �s and �r is used to distinguish these travel time functions
from the total travel time function � = �s + �r and from the � variable in the � � p domain. Issues such as
amplitudes (with damping), distance aperture, angular muting, antialiasing, are important for a successful migration
implementation. Post migration processing such as AVO and velocity analysis usually requires that the Kirchho�
summations be separated into intervals of o�sets between sources and receivers. We will pay special attention to the
computation count of the migrations. To make our discussions more speci�c, let Nx, Ny, and Nz be the 3D image
volume grid sizes. The output image volume size per o�set is Nout = Nx �Ny �Nz. The number of o�set ranges is
Noff . The total output volume over all o�sets is Noff �Nout. The number of input traces Nin is determined by the
number of shots (proportional to Nx �Ny) and number of receivers per shot. Let the number of samples per trace
be Nt. We will use the following values for our "typical" 3-D marine survey: Nx = Ny = Nz = 1000, Nt = 2000,
Nin = 50; 000; 000, and Noff = 50.

The computation cost of the Kirchho� migration (Eq. 1) is proportional to the number of input traces and the number
of output image points,

Nkirchhoff = Ck �NinNxNyNz: (2)

where Ck is the number of (arithmetic or oating point) operations per input trace per image point. As can be seen,
the cost of Kirchho� migration increases rapidly with the survey size and become prohibitive for large surveys. Our
beam migration concepts and implementation in this paper overcomes this di�culty.

Beam Migration Methodology

Introduction

In a postal distribution center, the postal service bundles the mail according to the neighborhoods of the recipients
before delivery. This is more e�cient than making one trip from the distribution center to the same neighborhood
for each piece of mail. In a Kirchho� implementation, if the contribution to the output image by one input trace is
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computed independent of those of other input traces, that implementation is the migration equivalent of \one-trip-
per-piece-of-mail". In such an implementation, the computation time of migrating two traces is roughly double that
of migrating one trace.

The input traces of a 3D reection seismic survey are densely spaced in both the source and receiver coordinates,
implying large dimensional spatial adjacency. The postal analogy suggests that we should take advantage of the spatial
adjacency of traces, and migrate a bundle of many traces for the cost of migrating one or two traces. Speci�cally, we
would like to regroup the input traces into a collection of supergathers, with each supergather containing traces that
are adjacent to each other. The patches of a supergather are two small areal neighborhoods containing the sources
and receivers of the traces in the gather. Let xsg and xrg be some reference points within source and receiver patches
respectively. We will refer to xsg and xrg as the centers of the patches, and require that the patches be limited in
size by some radius R. Equation 1 can be rewritten as summations over the supergathers,

M(x) =

NgthrsX
g=1

Mg(x); (3)

where the summation is over the supergather index, Ngthrs is the number of supergathers, and Mg is the migration

contribution from the gth supergather,

Mg(x) =

NgX
n=1

j�xsj<R;j�xr j<R

Z
d!A(xs;xr;x; !) ~Psr(!) � exp[i!(�s(xs;x) + �r(x;xr)]; (4)

where Ng is the number of traces in the gth gather, and the source and receiver coordinates xs and xr vary with the
trace summation index n. In Eq. 4, �xs = xs � xsg and �xr = xr � xrg are the coordinate deviations of the traces
relative to the reference points. The number of traces vary from supergather to supergather, for our analysis, we will
use Ng = 50, Ngthrs � Nin=Ng = 1000000.

First Order Approximation

For a given supergather, since the source and receiver patch sizes are small, we can approximate the travel times
within a patch using the time map information associated with a patch center, by interpolation or Taylor expansions.
Taylor expansions of the time map functions �s(xs;x) and �r(x;xr) about the source and receiver centers lead to (in
lowest order):

Mg(x) = Ac(xsg ;xrg;x)B
slant2

g (�;p
s
;p

r
); (5)
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r
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P
c
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s
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r
��xr); (6)

� = �s(xsg;x) + �r(x;xrg);ps = rxs�s(xs;x)jxs=xsg ; and pr = rxr�r(xr;x)jxr=xrg : (7)

For simplicity, we have replaced A(xsg;xrg;x; !) with its frequency independent component Ac(xsg;xrg;x), and

absorbed the frequency dependence of A in the seismogram by replacing Psr(!) with ~P c

sr(!), or with P c

sr(t) in the

time domain. It is important to point out that the expression for Bslant2

g (�;p
s
;p

r
) is a slant stack of the seismogram

with two slant parameters p
s
and p

r
. If the source and receiver coordinates are not independent, the two parameter

slant stack can be reduced to a single parameter slant stack:

� + p
s
��xs + p

r
��xr ) � +P �X (8)

where, for example, under the sort restrictions, �xs = 0 (CSG), �xr = 0 (CRG), �xs � �xr = 0 (COG), or
�xs +�xr = 0 (CMG) with P and X de�ned by

P = p
r
; X = �xr (CSG) (9)

P = p
s
; X = �xs (CRG) (10)

P = p
s
+ p

r
; X = (�xr +�xs)=2 (COG) (11)

P = �p
s
+ p

r
; X = (�xr ��xs)=2 (CMG): (12)

Here we have assumed that patch centers are chosen to be the source and receiver locations of one of the traces
in the gather. The replacing the two-parameter slant stack expression in Eq. 6 with the one-parameter slant stack
expression (Eq. 8), we have:

B
slant1

g (�;P) =

NgX
n=1

j�xsj<R;j�xr j<R

C[SROM]G

P
c

sr(� +P �X): (13)

where C[SROM]G stands for CSG, CRG, COG, or CMG sort restrictions. Like xs and xr, the variable X varies with

the trace summation index n. Bslant1

g (�;P) is to be used in place of Bslant2

g (�;P) in Eq. 5 to get,
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Mg(x) = Ac(xsg ;xrg;x)B
slant1

g (�;P): (14)

Equations 3, 7, 9{12, and 13{14 form the basis for the one-parameter slant stack migration of (CSG, CRG, COG,
CMG) supergathers using the �rst order time map approximation.

Computation Counts

The � � P volume of the slant stack (Eq. 13) can be discretized by Npx �Npy � N� grid points, where Npx �Npy

is the size of the sampling grid for P, and N� is the number of samples in slant stack time. We use the following
typical values: Npx = Npy = 50, N� = Nt = 2000.

The beam migration using the slant stack consists of the two major steps: the beam forming (Eq.13), and mapping
from � �P space to the output volume x (using Eqns. 7, 9{12, and 14 ). The cost of performing a beam migration
therefore has two dominant terms,

Nbeam = Ngthrs(CbNgNpxNpyN� + CmNxNyNz); (15)

where Cb and Cm are machine dependent constants. This is to be compared with that of Kirchho� migration (Eq. 2):
Nkirchhoff = CkNgthrsNgNxNyNz, with Nin = NgthrsNg . For su�ciently large output volume, the beam forming
cost (�rst term in Eq. 15) can be considered a small, leading to, Nbeam � CmNgthrsNxNyNz. Thus the speedup of
the beam migration over the Kirchho� migration can be estimated by

Speedup � Nkirchhoff=Nbeam � (Ck=Cm)Ng : (16)

and is roughly proportional Ng , the number of traces per supergather, with Ck=Cm being of order unity. With typical
seismic surveys, Ng ranges between 20 to 200. This theoretical speedup is hard to achieve.

Generalized Slant Stack

Sort restrictions (such as CSG, CRG, CMG, or COG) on the supergathers are required to reduce the two-parameter
(p

s
and p

r
) slant stack (Eq. 6) to a one-parameter (P) slant stack (Eq. 13). Sort restrictions degrade the speedup

(due to smaller Ng). One way to overcome the restriction is to simply impose no sort in supergathering. A gather can
be corrected to a speci�c sort type by relocating the traces slightly within the source and receiver patches in a model
or moveout consistent manner before forming the beams. This correction process introduce errors. For shallower
depth, keeping only the leading terms also leads to large errors.

Notice that in the computation count for the one-parameter beam migration, the exact attribute of P (such as
P = p

s
+ p

r
(COG)) does not a�ect the outcome (Eq. 15) of the qualitative analysis. We can choose the � � P

representation such that the mapping x(P; � ) and the inverse mappings P(x) and �(x) are simple and unique. For
example, if we choose P to be p

s
, then x(P; � ) for a constant P correspond to ray paths emanating from the source

patch center, and �(x) and P(x) are supplied by the maps of the travel times and their gradients with respect to
the source. The P = p

s
+ p

r
is probably desirable because of its symmetry with respect to the source and receiver.

Directional path normals to the total travel time contours are also good candidates. Normals to constant velocity
migration ellipses or straight lines from the source-receiver midpoints are found to be robust choices. Given that we
have picked the beam directional parameterization x(P; � ), we can now do beam forming, or migrate into the � �P

volume using Eq. 4 as follows,
Mg(x) = Bg(� (x);P(x)); (17)

Bg(�;P) =

NgX
n=1

j�xsj<R;j�xrj<R

Ac(xs;xr;x(P; � ))P
c

sr(�s(xs;x(P; �)) + �r(x(P; �);xr)); (18)

where all occurences of x is replaced with x(P; � ) including those implicit in �xs and �xr. The expression for
computation counts, Eq. 15, remains valid for the beam forming and migration using Eqns. 17 and 18, as exactly
the same arguments that lead to Eq. 15 still apply. The proportionality constant Cb for the beam-forming varies
somewhat depending the choice of the beam parameters P and � . Also notice that the sort restrictions on the
supergathers are no longer required if Eq. 18 above or its Taylor expansion versions are used for the beam forming.

Implementation Notes and Strategy

Our implementation is based on a master-slave model with a distributed homogeneous set of worker nodes. We also
tried to minimize the communication between worker nodes during the migration by precomputing time maps for
a regular grid of source points on the model surface. Each node stores the entire set of time maps (compressed)
on its local disk, so that no nodes will need time maps from other nodes during migration. Due to disk space and
communication limitations, slant stacking of the supergathers are not precomputed. Each node is responsible for
migrating a �xed o�set range. Each worker sorts the input traces it obtained from the master into supergathers
based on the source and receiver coordinates of the traces. These sorted gathers are stored on local disks of the
worker nodes, and removed from the disks as they are migrated. The beam migration implementation was initiated
in 1994. We �rst tested our beam migration implementation in production around the end of 1995 on North Sea
data set. The data set was very small (25 million traces, covering 11:25 � 10:0km2 or 5.4 Gulf of Mexico blocks), so
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we were able to output a full volume skipping every other line and every other crossline line, using a 4-node IBM
SP2 (each node was an IBM 590, with a 66Mhz clock, 512Mb RAM). Tight parameters were used for additional runs
targeting the shallow depths. We were encouraged to �nd that the beam migration ran roughly 25 times faster than
the Kirchho� migration. The migration of the �rst 9 out of 31 o�set ranges of input took two weeks. The beam
migration has been in production processing since it was �rst tested successfully.

Practical Considerations and Data Examples

Two examples are presented illustrating the results of implementing beam migration. Both are marine streamer
acquisition with typical modern parameters of approximately: 6000 meter cable length, 40 meter subsurface line
spacing, 12.5 meter subsurface crossline spacing and 60 fold. The �rst example illustrates a subsalt migration from
the Gulf of Mexico. Figure 1(left) shows the �nal image obtained by full volume Beam migration with the top and
base of salt identi�ed. The processing ow in summary was: (1) Target oriented Kirchho� migration to build the
velocity model to the top of salt (2) Poststack depth migration to image and pick top of salt (3) Full volume Beam
prestack depth migration to image and pick base of salt (4) Full volume Beam prestack depth migration with �nal
velocity model. A well has been drilled con�rming both the thickness of the salt in the model and the presence
of hydrocarbons associated with the bright subsalt reection. Figure 1(right) illustrates the second example, the
results of Beam migration in an area with complex faulting. Here the velocity model was derived from target oriented
Kirchho� migration followed by a full volume Beam migration. Note the clear and crisp imaging of the faults.

By assuming that the run time of a standard Kirchho� migration increases linearly with the size of the output volume
a relative speedup of 7 to 10 times has been consistently observed between standard Kirchho� and e�cient the Beam
implementations.

1 km

1 km

top salt

base salt

1 km

1 km

Fig. 1: Left: 3D prestack beam migration with salt. Right: 3D prestack beam migration with faults.

Discussion and Conclusions

We have presented a beam approach to Kirchho� migration. In this beam approach, the input traces are migrated one
supergather at a time. The source and receiver positions of traces in each supergather are scattered in small patches
so that the migration of the gather can be performed by stacking the contribution of the gather into a beam volume
before projecting beams into the much larger output imaging volume. This approach has the theoretical speedup of
up to two orders of manitude over Kirchho� migration. A speedup closer to 10 has been consistently achieved in
production processing, subject to practical survey geometry limitations and computational resource compromises.
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