

Espessura de sedimentos em uma bacia a SE do Cone do Rio Grande a partir da inversão linear de anomalias ar-livre: resultados preliminares

Emilson Pereira Leite e Naomi Ussami

IAG/USP - Brasil

ABSTRACT

A integração de dados de gravimetria marinha convencional e dados derivados de altimetria por satélite da missão GEOSAT/ERM utilizando Colocação por Mínimos Quadrados permitiu mapear uma anomalia negativa de amplitude -23 mGal, de direção aproximadamente NE-SW, extensão lateral de 400 km e comprimento de 600 km. Tomou-se um perfil perpendicular à direção principal da anomalia e aplicou-se a inversão linear 2-D para mapeamento de densidade. Os resultados preliminares sugerem que a espessura de sedimentos na parte profunda da bacia pode atingir 2,5 km num local de batimetria de 4.800 m, portanto, sobre crosta oceânica. O volume de sedimentos acumulados nesta bacia correspondem à aproximadamente 50% do volume de sedimentos pós-Mioceno depositados no Cone do Rio Grande onde hidratos de gás na parte distal foram encontrados.

INTRODUÇÃO

O modelo de anomalias ar-livre obtido utilizando a Colocação por Mínimos Quadrados (Leite, 1997) e integrando dados de gravimetria marinha convencional e dados derivados de altimetria por satélite da missão Geosat/ERM (Fig. 1) permitiu definir uma anomalia negativa centrada nas coordenadas -48°W e -35°S, no Atlântico Sul, a SE do Cone do Rio Grande (Fontana, 1992) mostrada na Fig. 2. Esta anomalia não tinha sido bem mapeada utilizando isoladamente dados de gravimetria marinha convencional e derivados de altimetria por satélite (Knudsen, 1995).

A modelagem inversa de anomalias gravimétricas é útil na determinação dos limites de espessura e da distribuição de densidades nas camadas sedimentares e embasamento. Um melhor mapeamento das anomalias da margem continental e bacias oceânicas em conjunto com a utilização de algoritmos de inversão permitirão um refinamento dos mapas de isópacas de sedimentos (Emeri & Uchupi, 1984).

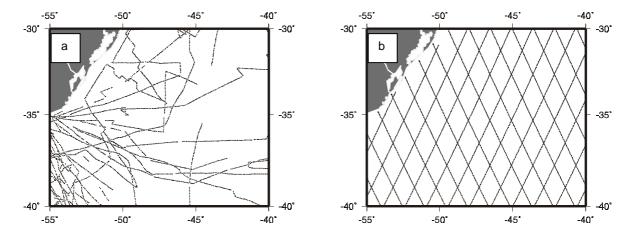


Figura 1 - (a) Gravimetria marinha. (b) Altimetria por satélite (GEOSAT/ERM).

INVERSÃO DOS DADOS

A inversão linear dos dados ao longo de um perfil A-B como mostrado na Fig. 2 foi efetuada utilizando a idéia de vínculos que permite que alguns parâmetros sejam fixados e/ou relacionados entre si como sugerida por Barbosa et al. (1997). Os funcionais para a implementação desses vínculos foram calculados e adaptados para este caso e a solução do sistema linear segundo esta metodologia é

$$\mathbf{p} = \left(\mu_{\mathbf{a}} f_{\mathbf{a}} \left(\mathbf{A}^{\mathsf{t}} \mathbf{A}\right) + \mathbf{G}^{\mathsf{t}} \mathbf{G} + \mu_{\mathbf{r}} f_{\mathbf{r}} \left(\mathbf{R}^{\mathsf{t}} \mathbf{R}\right) + \mu \mathbf{I}\right)^{-1} \left(\mu_{\mathbf{a}} f_{\mathbf{a}} \mathbf{A}^{\mathsf{t}} \mathbf{h} + \mathbf{G}^{\mathsf{t}} \mathbf{d}\right) \tag{1}$$

 ${f p}$ é o vetor de densidades calculadas. Como a atração gravitacional (${f g}$) de corpos poligonares depende da geometria e da densidade, a derivada de ${f g}$ em relação à densidade é igual a contribuição geométrica somente. Estes valores, utilizados para preencher a matriz de sensibilidade (${f G}$), foram calculados pelo método de Talwani et.al. (1959). Essa matriz tem dimensões DxM, onde D é o número de dados observados e M é o número de parâmetros que deseja-se obter. ${f A}$ é uma matriz N x M que contém os indexadores para as células que deseja-se pré-fixar um valor (vínculo absoluto), sendo N o número de parâmetros a fixar (${f N} \le {f M}$). Esses valores são armazenados no vetor ${f h}$. Assim, se desejamos fixar o valor 0,5 para o i-ésimo parâmetro, basta colocar o valor 1 na i-ésima coluna da matriz ${f A}$ e na linha (supondo que só tenha este parâmetro fixado), e preencher o resto da matriz com zeros. Neste caso, o vetor ${f h}$ terá dimensão 1 x 1 e conterá apenas o valor 0,5. ${f R}$ é uma matriz L x M, onde L é o número de relações a priori entre pares de parâmetros. Por exemplo, se sabemos que o i-ésimo parâmetro é duas vezes maior que o j-ésimo parâmetro, as linhas da matriz ${f R}$ serão nulas com exceção da i-ésima e da j-ésima linha, que serão fixadas com os valores 1 e -2 respectivamente, de forma a minimizar a expressão ${\bf p}_i - 2{\bf p}_j \approx 0$.

Os termos fa e fr são fatores de normalização calculados da forma

$$f_{a} = \frac{\|G\|}{\|A\|} \qquad \qquad e \qquad \qquad f_{r} = \frac{\|G\|}{\|R\|} \tag{2}$$

onde o operador || || é a norma euclidiana.

 μ é um fator de estabilização do problema e μ_a e μ_r são os pesos atribuídos à cada tipo de vínculo.

O meio onde desejava-se calcular as densidades foi dividio em células de 16 km de largura e 0,25 km de altura, num total de 500 células (25x20). A profundidade máxima foi fixada em 10 km. Retirou-se um modelo bilinear ajustado aos dados de anomalia ar-livre, para eliminar as fontes regionais.

O modelo apresentado na Fig. 3 foi calculado fixando-se alguns valores para determinadas células: As células entre as distâncias de 250 e 350 km e profundidade de 1 km foram fixadas com o valor de 2,4 g/cm³; a última camada teve as células fixadas com valor de 2,8 g/cm³, tomado como valor de referência correspondente ao embasamento.

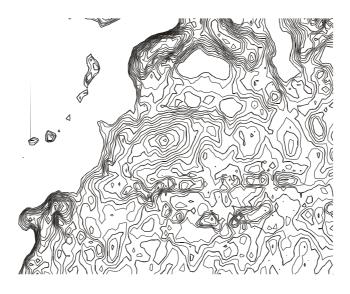


Figura 2 - Mapa de anomalia ar-livre (Leite et.al., 1997) e perfil AB utilizado na inversão dos dados.

DISCUSSÃO E CONCLUSÕES

A distribuição dos valores de densidades permitiu estimar os limites dimensionais para a camada sedimentar correspondente ao perfil A-B. A maior espessura encontrada está em torno de 2,5 km, e é relacionada a maior

amplitude da anomalia ar-livre, ou seja, -23 mGal (Fig. 3). A extensão lateral, segundo o modelo calculado, é cerca de 200 km na direção do perfil AB. A resolução do modelo é o tamanho das células utilizadas (0,25 x 16 km) e a densidade da camada de sedimentos está entre 2,3 e 2,5 g/cm³. Novos perfis gravimétricos, de direção NO-SE e NE-SO, devem ser utilizados afim de determinar um modelo tri-dimensional para a estrutura da bacia sedimentar. Desta maneira, os resultados poderão ser utilizados para calcular novas isópacas de sedimentos para a região.

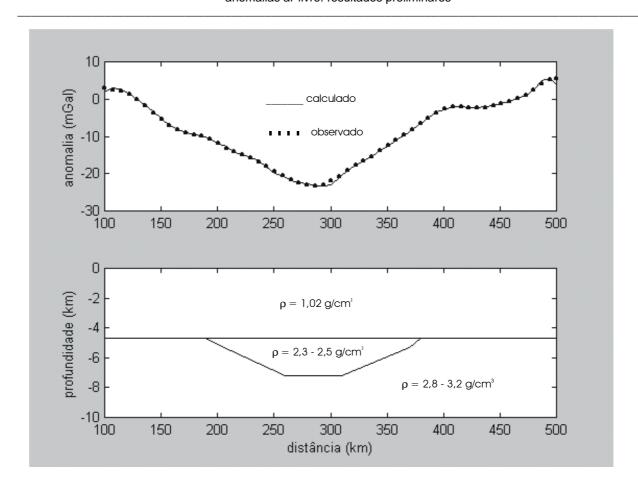


Figura 3 - (a) Anomalia ar-livre residual no perfil AB e curva teórica calculada pela inversão linear. (b) Modelo simplificado da estrutura da camada de sedimentos.

REFERÊNCIAS

Barbosa, V.C.F., Medeiros, W.E. and Silva, J.B., 1997, Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics, 62(6): 1745-1757.

Emery, K.O. and Uchupi, E., 1984, The Geology of the Atlantic Ocean, Springer-Verlag, New York, 1050pp.

Fontana, R. L., 1992, Investigações Geofísicas Preliminares Sobre o Cone do Rio Grande e Bacia de Pelotas - Brasil. Acta Geologica Leopoldensia, 13(30): 161-170.

Leite, E.P., 1997, Ajustamento e integração dos dados gravimétricos na região compreendida entre 25/40°S e 25/65°W, Trabalho de Graduação, São Paulo, IAG-USP, 49pp.

Moritz, H., 1980, Advanced Physical Geodesy, Abacus Press, Wichmann, 500 Pp.

Talwani, M., Lamar Worzel, J. And Landisman, M., 1959, Rapid Gravity Computations for two-dimensional bodies with application to the Mendocino Submarine Fracture Zone. J. Geopys. Res, 64(1): 49-59.

AGRADECIMENTOS

Os autores desejam agradecer: à FAPESP, pelo financiamento do projeto de mestrado (processo nº 98/00107-8) no qual este trabalho está inserido; ao Prof. Dr. Carlos Alberto Mendonça, pelo auxílio na implementação do método de inversão gravimétrica; e ao Prof. Dr. Eder Cassola Molina, pelo auxílio no processamento dos dados para a representação integrada do campo gravitacional na região de estudo.