
Abstract

In this work are considered the finiteness of microstructure dimensions and the occurrence of stress and 
concentrating points and their influence on the process of wave propagation in porous and cracked media.

INTRODUCTION
Frequency difference between P and S waves is a well-known fact in seismology and in multi-wave seismic p
A great deal of work has been done to explain this phenomenon [1]. There are two independent quantities in
theory, namely, density and stress or density and velocity. A specific time (and frequency) may occur when
dimensions are present, such as finite source dimension, or mean thickness of some layered structu
dimensions of the source are responsible in forming more the lower frequency of S waves then of P waves. Th
reason for this is that is impossibly to create a spherically symmetric field of shear waves. Flow of shear de
from higher stress areas to low stress areas may not be sufficiently faster than the shear wave velocity 
structures caused dispersion of both P and S waves which can degenerate in limited cases. If the structures a
and the period is small relative to the wavelength, the dispersion degenerates into hexagonal anisotropy. Fo
thick layers, all waves are divided into physical interpretable sums in accordance with the ray method. Sha
with periodic thickness of 0.1-0.2 wavelength produce shear waves with lower frequency than the 
compression waves.
The aforementioned phenomenon is not completely understood. First, the frequencies of both P and S waves
two orders lower than those generated from the real source geometry. For example, steel tubes of 20 cm i
dogged into the ground have been used. The tube was filled with porous absorber. It provided asymmetric e
charge of one detonator or several inside the tube. Good quality seismograms and phase inversion of SH w
achieved by the use of steel cover to exclude inelastic impact. Similar methods of exclusion of strong impacts
in cases of striking a blow into the end-wall of a massive horizontal stand (railway sleeper). The observa
carried out as a rule on head waves of SSS and PPP types. The ratio of S and P frequencies was found app
equal to the ratio of their velocities [2]. The frequencies of both P and S waves were ten times lower tha
between wave velocity to the source dimension. It was clear that both wave frequencies evolved but the rates 
any case, the approximately equal lengths of P and S waves were found in the various frequencies ranges
wave absorption showed that in the ultrasonic frequency range, the absorption amplitude depended only on de
of 10-6 -10-7 orders of magnitude. For the lower wave amplitude values the measurements also showed the en
spectra with low frequencies that was interpreted as a case of absorption [3]. The frequency behav
compression, shear converted waves were considered to be caused mainly by inelastic action and the micros
real rocks. The microstructure may also give rise to highly localized stress concentration points invalidating 
law although elastic behavior may be assumed on the average.

POROUS MEDIUM AS A DISCRETE SPACE
Porous and cracked media may be described by porosity, f, and specific surface, 0σ , with dimension of inve

Typical mean microstructure dimension, 0l , is related to 0σ  and to f  by the relation

( )f140l0 −=σ ,                                                                          

obtained from integral geometry [4]. The discrete nature of the structure reflected by the finite dimension l

nonequivalence of the difference and differential operators. Equivalence takes place only in the case of

Derivatives of order higher than the second thus appear in the differential equations. The translation opera
function ( )hxu ±  is known to be

)exp()()]([ xhDxuxup ±= ,                                                    

where ./ xDx ∂∂=  The difference operator is determined as
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NONLOCAL EFFECTS
Classical continuum mechanics assumes that the cause and effect are localized. This, however, may not apply to
microinhomogeneous media, where nonlocal effects may lead to differences of many orders. For porous media
containing fluids and gases, the stress field varies strongly on the surface of each grain, from the point of contact
between the grains to the point of contact with liquid or gas. Therefore, continuous mechanics formulation would require
the concept of real field averaging, and relate the field to any structure point. For example, the center of gravity of grain,
or the center of a cube with dimensions of 0l determined by specific surface of 0σ  (for cracked media). One of the

simplest versions of averaging is the combination of translation operators like
[ ] )exp()()( xhDxuxup ±= .                                                                         (5)

The arithmetic mean of the field is:

[ ] [ ])exp()exp()exp()exp()exp()exp()(
6

1
)( zzyyxx hDhDhDhDhDhDxuxuP −++−++−+= ,                         (6)

where P is the averaging operator. The operator may take a probabilistic meaning as
[ ] ∑== ).(),,1()1,()( yuyxpxuMxuP x                                                                          (7)

Note that all sums are positive and add up to 1. The operator ),,1( yxp  is the probability of transfer from the neighboring
point y to point x in one step if

,
2
1

),,1(
l

hyxp k =+                                                                                    (8)

where l  has space dimension and k  varies as ,..................,2,1 l±±± kk hh −=− . In equation (7) xM  is mathematical

expectation. This averaging concept justifies the derivatives approximation by central differences. The linear operator
EPA −=  (where E  is the unit operator) has been long noticed to be a discrete analog of the Laplace operator

∆)2/( 2h [5]. For the elasticity theory the highest derivatives of the fourth order with small factor 2h appear in the form
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In one-dimensional case it is just a sum ( ) xxxuh )2/(2 2µλ +  that is familiar in one-dimensional chain theory [ ]6 .

DISSIPATION ENERGY
It was found in contact mechanics [7] that for elastic particles with finite area of contacts the normal forces to the contact
surface do not cause infinite stress at any contact point. However, the translations are in the direction of the contact
surface no matter how small is the disturbance. To exclude these infinite stresses, a model of partial creeping of particles
was created in contact mechanics [7]. A similar situation takes place at the crack tips. For discrete solids, an asymmetry
appears in the behavior of normal and shear of microstructure, which is not present in continuous media. A known
solution of the problem may be used to obtain an expression for the dissipation energy, say .W∆  For shear between two
grains, it has been found that [7]
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In equation (10) W∆  is the energy lost in a cycle of loading and unloading; a is the contact radius; p is the friction
coefficient; v is the Poisson ratio; µ  is the shear modulus of grain material; and τ is the tangent stress. Thus, the
hysteresis loop may be approximated by ellipse with the major axis proportional to τ (or deformation γ ) and the minor

axis to 2τ  (or 2γ ). The equation for an ellipse is given in the parametric form as:

ubua sincos −=τ   and   ubua sincos +=µγ ,                                                                 (11)
 where 1cos1 −≥≤ u . On the other hand, in complex form the equation (11) can be rewritten as:

)]/(1[ abiaeiu +=τ    and   )]/(1[ abiaeiu −=µγ .                                                              (12)

We have the ratio )/(21
)/(1

)/(1
abi

abi

abi +≈
−
+=

µγ
τ

 where b is proportional to 2γ , and a to γ . Hence, we can write, instead

of classical Hook’s law, a more general nonlinear relation in complex form
)1( γµγτ is±= ,                                                                                     (13)

where s  is a real constant. The limit 0→b  determines the single-valued relation between stresses and deformations.
This corresponds to zero hysteresis loop area and dissipative energy. The generalization of equation (13) for the case of
arbitrary placed contacts and arbitrary direction of action forces may be obtained by using a tangential stress of intensity

2σD , where 2σD  is the second (square) invariant of stress tensor.  In this case

( ) ( )22
2 kiikkik nnnD σσσ −= ,                                                                       (14)

where the first term is the square of the absolute value of the load vector iP , and the second term is the square of the

load acting over the contact normal, i.e. nP . Dissipative force is the Euler variational derivative of the dissipation energy

with respect to the generalized coordinate ikσ and then with respect to the coordinate kx in accordance with the

principle of least action, i.e.
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Hook’s law is thus modified to be

( )212 εµδθλσ Deikikik ++= ,                                                                    (16)

where 2εD  is the second invariant of the deviator deformation tensor. The generalized form of equation (16) coincides

with the known equation [7] for one-dimensional case. Moreover, the voluminal force created by inner stresses kik x∂∂ /σ
is variant with respect to the coordinate system rotation. Using the principle of least action, a purely imaginary dissipative
force is obtained, namely:

( )kiki xDsif ∂∂= σµ ε 2 ,                                                                         (17)

where

( )ηηηµπ −−= 1
3

2
2
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o

pPa

rv
s    with   

3
oorση = .                                                       (18)

Above, oσ  is the specific surface; or  is the average radius of grain; n the mean average number of contacts; a the

radius of contact. The dissipation force containing quadratic terms in the deformations cannot be ignored because of the
large factors opPµ and aro . For the cracked media, an analogous problem was solved in reference [8] for the rigid-

plastic case. The dissipative was found in the form:
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where M  is the constant depending on the creep line configuration; z the average length of crack rectilinear segment; eγ
the elasticity limit of deformation; γ  the ratio ps VV  and es µγτ = . In this case the factor eγ1  accounts for the

nonlinear term. An infinite friction coefficient ∞→p  results in absence of creep and deformation of structure.

EQUATION OF MOTION
The equation of motion becomes:
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For one-dimensional case, equation (20) has the form:
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oε is the amplitude value of deformation, and the + and – signs correspond to the loading an unloading processes. In

one-dimensional coordinates: oooo lclxx λλ == ** , , where oλ  is the mean wavelength, the equation of motion

becomes

xxxxxxxxxtt uuuiuu βε +±= 2 ,            where 22
ool λβ = .                                           (23)

PLANE WAVES
In discrete medium, P and S waves are taken as the average such that the mean intensity of the tangential stress of the

S wave is ( ) γ/12/3  times higher than the compressional wave. The shear wave velocity is γ/1  times lower than that
of the compressional wave, hence

( ) sp γεε 3/2=     and   ps βγβ )/1( 2= .                                                              (24)

The forth derivative is the result of discretization of the medium. For sedimentary rocks, ε and β  are of the order of 10-2-
10-4. With accuracy of ε  and β  squared, equation (23) may take a form:
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ww
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,                                                                            (25)

where w=ux and ,xt −=ξ  xt +=η  are the characteristic arguments. Such a reduction has been carried out before in [6],
and it is related to the fact that differentiation with respect to η  coordinate leads to small values of ε  or β . An ideal
wave process would not depend on the η  coordinate or the values of the second order and may be neglected. equation

(25) is a Korteweg-de-Vries (KdV) equation with a purely imaginary nonlinear term. In the case of 0=β , it has an exact
solution:
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)( wiFw εηξ µ= .                                                                                  (26)
In general, it has an approximate solution with the accuracy of ε  and β  squared:

)(])([),( 2 ζηξκεηξηξ FwiFw =−= µ ,                                                                   (27)

where F is an arbitrary function, while )(2 ξκ  satisfies the equation

0),0(),0(''3),0(')(),0('''
2

2
2 =

∂
∂−+ ttFtFttF
ξ
ζκ .                                                            (28)

In equation (28) the factor of the second derivative is of the first order of triviality relative to ε  and β . Hence, for the
zero approximation, equation (28) may be simplified to

0),0(')(),0(''' 2 =+ tFttF κ .                                                                        (29)

CONCLUSIONS
The solution of equation (25) was obtained in order to describe the evolution with a Berlage pulse, at a distance which is

set by the equation )(sin)exp(),0( 1
2 ttttP ωα−=  with x=0. Unlike the classical KdV equation, the imaginary nonlinear term

causes absorption of the wave only but not the increase of the front steeples of the waves. The dispersion term expands
the impulse as in the classical KdV equation. The nonlinear term causes both absorption and expansion of the impulse; it

is ( ) γ/12/3  times higher for S waves. The dispersion term leaves the absorption unaffected and casts the low
frequencies in the forefront leaving the higher frequencies behind. That may mistakenly be considered as absorption.
Large values of both dispersion and absorption for shear waves are observed such that S wave frequencies become
lower than that of P waves. Both waves should have the same lengths in the limit [2]. In Figure 1, the impulse changes of
plane P and S waves are shown for different distances from the source. Curve A corresponds to the same P and S wave
spectra while Curves B and C correspond to P wave and S wave spectrum, respectively. As an example, the Berlage
impulse was set with the index n=2. It is evident that S waves have higher absorption and expansion than P waves.
Equation (25) shows that in the different frequency ranges, there are actually different equations of motion, since for long
and short waves the influence of dispersion and absorption differs significantly. Observations of direct waves using
different orientation of borehole devices shows a clear difference between P and S waves frequencies in sand and clay
sediments in West Kazakhstan. In Figure 2 the record of direct waves excited by a small amount of detonator near the
borehole orifice is shown. The contents of horizontal receivers orientated in different azimuths holds one vertical device
registering compression and then shear waves. The depth of the device was 14m. The horizontal devices hardly register
compression waves. It is clear from Figure 2 that visible frequencies of S waves are half as high as the ones of P waves
that were emitted with the same source. The ratio Vs / Vp is about 0.5.

             ...                   Figu
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