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Abstract

We present a novel ray-tracing method for obtaining the minimum traveltime raypath connecting any two fixed
points in complicated 3-D geological models. The problem is cast as a nonlinear optimization problem where the
cost function (traveltime) is globally minimized with respect to the take-off angles by means of simulated annealing
(SA). As opposed to conventional ray tracing methods (e.g. shooting and bending), the new technique overcomes
some well-known difficulties regarding multipathing and take-off angles selection, specially in complex 3-D struc-
tures. These include local convergence (i.e. failing to obtain the raypath with absolute minimum traveitime) and
divergence of the take-off angle selection strategy. Under these circumstances, shooting and bending methods
do not provide confidence on the results at a reasonable computational effort. We explore the behavior of the
new method using a fault model and a salt-dome model. Also, we present a versatile model representation that
can be used to accommodate a large class of geological models. The results demonstrate the ability of the new
technigue of solving the two-point ray-tracing problem in complex 3-D media accurately and efficiently.

INTRODUCTION

Several methods for solving the two-point ray-tracing problem in 3-D media have been developed in the literature (e.g.
Cerveny, 1987; Moser et al., 1992). These are shooting and bending algorithms that proceed iteratively from an initial
guess until the ray arrives to the receiver or the traveltime is stationary (Fermat's principle). When more than cne raypath
exists between source and receiver, usually these methods converge to the raypath that is closest to the initial guess.

In the shooting method, first an initial point (source) is fixed and a fan of rays is propagated by specifying a set of take-off
angles. After selecting those angles that generate raypaths arriving to the receiver neighborhood, a search strategy is
applied to update the angles until the ray emerges through the desired endpoint (receiver) within a given tolerance. Since
frequently the receiver location is an ill-behaved function of the take-off angles, the search strategy may fail or show poor
convergence, and as a consequence, some raypaths might be missed. Attempts to obtain the global minimum traveltime
raypath for 2-D models have been made by Sambridge and Kennett (1990), but convergence to the global minimum is not
guaranteed, specially in complicated 3-D structures.

In the bending method both end points are linked by an initial guess path, which is then perturbed iteratively so as to satisfy
the ray equations or Fermat'’s principle of stationary time. Unlike shooting, bending always produces a ray connecting
source and receiver. Since in general bending involves the solution of a nonlinear optimization problem, which requires
some kind of gradient directions to update the raypath, it tends to overlook multipathing propagation because the solution
depends on the first guess. Methods based on advanced graph theory for choosing an initial guess close to the global
minimum exist (e.g. Fisher and Lees, 1993), but the implementation of these techniques in complex 3-D structures is
limited not only because of computer memory issues, but also because the computation time increases dramatically when
the node spacing, for accuracy purposes, is reduced.

Recently, Velis and Ulrych (1996) presented a new ray-tracing method, called simulated annealing ray tracing (SART),
that overcomes the mentioned difficulties in 2-D models. Here SART is extended to 3-D models and further improvements
concerning accuracy and efficiency are incorporated into the original scheme. Essentially, the two-point ray tracing problem
is put into a nonlinear optimization framework which is in turn solved by means of very fast simulated annealing (VFSA)
(Ingber, 1989). This guarantees convergence to the global minimum of the cost function that represents the total traveltime
from source to receiver.

EARTH MODEL

The velocity model, which is contained within the cube (xmin, Xmax) X (Ymin, Ymax) X (Zmin, Zmax), is cOMposed of any number
of regions separated by curved interfaces representing geologic horizons, fault planes, etc. We assume all interfaces
are explicit functions of the form z = g(x,y). The velocity within each region may be specified by any function v = v(x),
x = (x,y,z), and must be twice differentiable. Interfaces may or may not intercept each other, allowing for a greater
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flexibility to construct a wide variety of models, including complex 3-D structures. Take Figure 1 as an example, where we
constructed two blocky models: a fault model and a salt-dome model.

INITIAL-VALUE PROBLEM (IVP)

Like in shooting, given an initial point, x,, and
an initial set of take-off angles, (6;, &), we solve
the ray equations using Euler and Runge-Kutta
methods. Here subscript s stands for source,
and @ and ¢ stand for declination and azimuth
angles which describe the ray direction at every
point of its trajectory.

Solving the IVP is not a trivial task. The ray
propagates until it finds an interface. At this
stage it is necessary to obtain the intersection
point between the raypath and the interface, and
to apply Snell's Law. Then the propagation re-
sumes with the new initial conditions, until the
ray endpoint arrives to a model boundary, where Figure 1: (a) Fault model. (b) Salt-dome model (partially shown).
propagation stops. Also, the propagation stops

when the ray arrives at a predefined target surface (usually a plane) passing through the receiver (e.g. a vertical plane
in a borehole experiment). During the propagation, an index indicating the current region the ray is traversing is saved
and updated after each interface crossing. This index is used to determine which velocity function must be used in the
integration of the equations. A flag for each interface is also provided which indicates the decision to make in case the ray
arrives at the interface. This allows one to model P- and S-waves, or even a conversion between the two, or to force a
reflection at any given interface to simulate a reflector.

BOUNDARY-VALUE PROBLEM (BVP)

The two-point ray tracing problem using SART is based on the straight-ray construction (Velis and Ulrych, 1996), and can
be stated as follows. Both source, x;, and receiver, x,, are fixed and the optimum take-off angles ¢, and &; are to be found
so that the total traveltime is a global minimum (refer to Figure 2a). The total traveltime (cost function) is written as

¢(95,§s) =Tse+Te1, (1)

where T is the traveltime which is obtained after solving the IVP from the source to the point where the ray exits the model
boundaries, x.. The second term, T, is the traveltime associated with the straight-ray construction. Since two angles
are required to determine uniquely the whole ray trajectory, ¢ is a two-dimensional function, and often multimodal and
non-differentiable. When @ is minimum, Fermat's principle is satisfied and xe coincides with the receiver.

The above procedure can be extended to deal
with reflected waves (Figure 2b). Now we write
the cost function

(a)

Tsu + Tue + Tee reflection=true

S =11 otherwise,

Xs

(2)
where x, is the point where the ray intersects
the reflector, and Tmax is the maximum guessed
value T, may take for all possible take-off an-
gles. As usual, the ray is propagated from the
source with take-off angles 65 and & until it ar-
z zY rives to the reflector at point x,. Here Snell’s
Law of reflection is applied and the propagation
Figure 2: SART strategy for tracing (a) direct waves and (b) reflections.  continues until the ray leaves the model bound-
aries at the emerging point x.. Finally, this point
is connected with the receiver using a straight line. Similar strategies can be devised for tracing normal rays, headwaves
and multiples (Velis, 1998).
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SIMULATED ANNEALING OPTIMIZATION

We minimize the above cost functions using VFSA (Ingber, 1989), a very efficient stochastic method for solving hard
nonlinear optimization problems. Take-off angle values are drawn from a Cauchy-like distribution that depends on a control
temperature, which is gradually decreased. At high temperatures, the model space is sampled more or less uniformly.
But at low temperatures, models with lowest cost function values are preferably sampled. Convergence is achieved at
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Figure 3: Traveltime vs take-off angles in the fault model. Figure 4: Multipathing in the fault model.

low temperatures when no further improvement in the cost function is observed. The advantage of VFSA over traditional
SA techniques relies in the choice of the generating distribution and the cooling schedule. The long-tailed distribution
permits exploration of the model space more effectively, and a faster cooling rate is allowed to accelerate convergence.
Furthermore, the temperature associated with each parameter is adapted dynamically (re-annealing) according to the
sensitivity of the cost function to each dimension in the model space.

Despite the fact that VFSA converges significantly faster than conventional SA methods, when @ is close to the global
minimum, taking T.. to zero may take several iterations. At these low temperature stages, SART switches to a local
optimization algorithm to minimize the distance between the emerging and the receiver points. Locally, this is a well-
behaved function, and the convergence to the global minimum is guaranteed. In practice a few iterations (two to eight) are
enough to take T virtually to zero within machine precision.

NUMERICAL EXAMPLES

Model 1 is comprised of seven regions with constant velocities delimited by planar interfaces and a fault plane, as shown
in Figure 1. We placed a source at (50, 0, 70) and a receiver at (50, 100, 16.5) and computed ® vs 6; and & (Figure 3). The
nonlinearity of the cost function and the complexity of the optimization problem are evident.

What makes it difficult to globally minimize this func-
tion is not only the presence of local minima, but also
the great number of discontinuities generated by the
model. SA appears to be a natural toal for solving this
kind of nonlinear optimization problems. While there
are many possible solutions to the BVP, there is only
one solution with a global minimum: ®q,c = 34.714 ms,
(s, &) = (125.90°,90.00°). The other rays arriving to
the receiver are local minima. These raypaths, together
with the SART solution, are plotted in Figure 4.

Model 2 represents a salt dome with several layers
and laterally varying velocities, as illustrated in Figure
1. For simplicity consider first a vertical slice of the
model (the plane x = 0) and £ = 90° for all raypaths,
so that they all lie on the same plane. We located
a source at (0, —50,0) and produced a fan of 10,000 54
rays with equally spaced take-off angles in the range declination (deg)

[35°, 85°]. Figure 5 shows @ vs &; for a receiver located

at (0,50,0). The complexity of this function is enor-  Figure 5: (a) Traveltime vs declination in the salt-dome model.
mous. It exhibits a large number of discontinuities and  (b) Blow out of the shaded region in (a).

local minima, some of which correspond to solutions of

the BVP. A detailed inspection of the curve reveals that the global minimum lies in a very narrow valley of only 0.1 degrees
wide. If take-off angle &, is also taken into account, the topography of ®(6s, &) becomes so complex we were not able to
plot it, or even to generate it without missing too many features. Despite the rather difficult optimization problem, SART
found the global minimum in about 500 iterations: ®op = 39.735 ms, (6s,&;) = (54.40°,90.00°). Figure 6a shows all the
solutions to the BVP together with the optimum raypath obtained by SART.

Finally, we used SART to find all the raypaths connecting the same source and 41 different receivers uniformly distributed
along the right borehole. The solutions are plotted in Figure 6b. Note that most of the trajectories are within one of two very

cost (ms)

cost (ms)
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Figure 6: (a) Multipathing in the salt-dome model. (b) SART solutions for several receivers on the right borehole.

narrow take-off angle beans. This illustrates the difficulties that a ray-tracing method would have to face to find the desired
solution.

CONCLUSIONS

SART is a very versatile computational algorithm for solving the boundary-value ray-tracing problem in general 2-D/3-
D models. SART aims to find the raypath connecting any source-receiver pair so that the associated traveltime is a
global minimum. The solution is found after solving iteratively a highly nonlinear optimization problem by means of VFSA.
The results are independent of the initial guess, since VFSA is a global optimization algorithm. At each iteration, SART
solves numerically the equations derived from the high-frequency ray approximation theory. This scheme is coupled with a
versatile model parameterization system that allows one to represent a wide variety of geclogic 3-D (or 2-D) structures. Any
number of regions delimited by arbitrary interfaces can be defined. The velocity within each region is specified separately,
which allows one to model any type of waves, including converted waves.

SART exhibits important improvements over existing ray-tracing techniques like bending and shooting. The problem of local
minimum paths is eliminated provided enough iterations are performed. Despite the fact that SART solves an IVP at each
iteration, the selection of the appropriate take-off angles does not represent a serious difficulty even for ill-behaved cost
functions. An exhaustive numerical comparison between SART and conventional shooting techniques (not shown here for
space reasons), demonstrates that SART is significantly faster for obtaining the desired solution for a given accuracy.

It is worthwhile mentioning that the optimum raypath obtained by SART corresponds to a particular solution of the IVP.
Consequently, first-arrival raypaths traveling across shadow zones and arbitrary head-waves cannot, in general, be found.
However, later arrivals like reflections, head-waves, and multiples can be obtained by specifying a ray signature in the way
of constraints and writing down the appropriate cost function.
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