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Three-dimensional two-point paraxial ray
tracing problem in the presence of caustics
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Abstract

We propose an approach that allows us to continue, in
a fast and accurate way, the iterative process defined by
the paraxial ray tracing method when a caustic is found
in the observation plane by the reference ray consider-
ing a three-dimensional velocity model. Seismic tomog-
raphy methods depends, strongly, on the quality (quick-
ness and accuracy) of ray tracing methods and, one of
them, the called paraxial, is very useful and efficient for
tomographic aims; but, the presence of caustics can
damage, in a dramatic way, the offering of rays by this
iterative method. In order to overcome this problem, we
choose a three-dimensional velocity model that permits
us to get analytical formulas of the paraxial ray tracing
elements and, in addition, be used as a good approxima-
tion for more complicated media in a vicinity of the refer-
ence ray. The behavior of a property related to the matrix
paraxial operator, such as condition number is shown
graphically by a three-dimensional surface. A geomet-
rical strategy (that can be applied for more complicated
models by means of a sequence of local approximations
using models that admit analytical treatments) is built
in order to avoid the effect of the presence of caustic
points when the reference ray arrives in one of them.
Then, the desired convergence to the receiver point is
obtained, almost always, in only one iteration.

INTRODUCTION

Seismic tomography requires efficient seismic ray tracing.
One of the most common ways of solving the two point
ray tracing problem is the so-called paraxial ray method
(Popov and P�sen�cı́k, 1978; Popov, 1982; �Cervený, Popov
and P�sen�cı́k, 1982). Any relatively complicated geological
model has a number of caustic surfaces where paraxial ray
tracing does not work well when the arrival point of the refer-
ence ray is close to one of them. The purpose of this work is
to present an approach that allows us to solve this important
problem.
Paraxial ray tracing is a shooting method consisting in an
iterative process that, at each iteration computes a perturba-
tion of the initial slowness vector at the source of the current
(reference or central) ray using a first-order expansion per-
turbation of the ray-tracing equations. This positional pertur-
bation, in the two-point ray-tracing problem, is the difference
between the arrival point of the central ray and the receiver.
The obtained slowness vector perturbation allows us to trace
a new ray, that will be considered a new reference ray in the
iterative process. If an analytical approach is desired, the
mathematical aspects of this procedure can become com-
plicated for more realistic models, but it is possible to find
a family of seismic velocity models for which all calculations

can be done analytically. For a numerical study of more com-
plicated models, a geometrical strategy to avoid caustics ef-
fects can be applied too.
With a three-dimensional seismic velocity model, that de-
scribes a linear variation of the square slowness with po-
sition, it is possible to make experiments that show a very
good performance of the paraxial ray tracing method when
the rays arrival points are far from caustics during the itera-
tive process. But, instabilities in the paraxial matrix operator
arise when caustics or quasi-caustics are found by the ray
in the observation surface. In this case, it is not possible to
continue searching the receiver.
The approach developed here consists in a geometrical
scheme that makes an extension of the central ray and gen-
erates news equations using an external point for the obser-
vation plane.
When the determinant of the paraxial operator is close to
zero the approach developed can be used, in order to ar-
rive to the receiver point. This is done in a single iteration.
The same result is observed even when the determinant is
identically equal to zero.

PARAXIAL RAY TRACING METHOD

A seismic source point S in a 3D isotropic velocity model
M defines a travel-time field T (x), x = (x1; x2; x3), on it.
By means of the 3D wave equation, it is possible to get the
eikonal equation:

3X
i=1

�
@T

@xi

�2
=

1

v2(x)
; (1)

where v(x) is the wave velocity function. The gradient ~rT
is perpendicular to the wave fronts (T (x) = constant); this
gradient is called slowness vector and represented by p =

(p1; p2; p3). The rays are admitted to be tangent to p at every
point of M . Then,

p(x(`)) =
1

v(x(`))
:
dx(`)

d`
; (2)

where ` is the arc length measured along the ray and x(`) is
its corresponding point on the ray. Consequently, jjp(`)jj =
u(`), where u = 1=v is the slowness. As suggested by Bur-
ridge (1976) we can define the Hamiltonian

H(x;p) =
1

2
[jjpjj2� u

2
(x)] (3)

which is equal to zero along ray.
Let us consider a seismic ray that originates in S and is
described by the pair yo(�) = (xo(�);po(�)) in a 3D ve-
locity model, where po(�) = (po1(�); po2(�); po3(�)) repre-
sents the slowness vector tangent to this ray in its point
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Figure 1: A three-dimensional schematic view of the prob-
lem.

xo(�) = (xo1(�); xo2(�); xo3(�)) and � is a ray parameter de-
fined by

R `
0
v(`)d` (Thomson and Chapman, 1985). We want

to compute perturbations �x(�) = (�x1(�); �x2(�); �x3(�))

and �p(�) = (�p1(�); �p2(�); �p3(�)) of the central ray yo(�).
The perturbed ray y(�) = (x(�);p(�)) will be called a parax-
ial ray; and is given by:(

x(�) = xo(�) + �x(�)

p(�) = po(�) + �p(�):

(4)

The ray tracing equations (�Cervený, 1987) are given by:8<
:

dx
d�

= ~rpH = p

dp

d�
= �~rxH = 1

2
~rx(u

2(x));

(5)

where ~rx and ~rp are the gradients with respect to the vec-
tors x and p, respectively.
The first order Taylor expansion of ~rxH around xo combined
with systems (4) and (5) produces the paraxial ray tracing
equations: 2

4 d�x
d�

d�p

d�

3
5 =

"
0 I

U 0

#"
�x

�p

#
; (6)

where I is the identity matrix of order 3 and Uij = 1
2

@2u2(xo)

@xi@xj
;

with i; j 2 f1; 2; 3g. Calling � the 6 � 6 matrix of equation
(6), we have a more synthetic expression:

d�y(�)

d�
= ��y(�): (7)

The formal solution of (7) (Aki & Richards, 1980) is:

�y(�) = P(�; �o):�y(�o); (8)

where �o is the initial value of � and

P(�; �o) = I+

1X
j=1

1

j!

�Z �

�o

�(�1)d�1

�j

= exp

�Z �

�o

�(�1)d�1

�
(9)

is known as the propagator matrix. Denoting
R �
�o
U(�1)d�1

by �(�; �o) = �, we can write:

Z �

�o

�(�1)d�1 =

"
0 (� � �o)I

�(�; �o) 0

#
: (10)
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Figure 2: A two-dimensional view of some elements of the
paraxial ray tracing scheme.

Then, P can be written in the matrix form:

P(�; �o) =

"
Q1 Q2

P1 P2

#
; (11)

where

Q2 = (� � �o)I+

1X
j=1

1

(2j + 1)!
(� � �o)

j+1
�

j
: (12)

Figure 1 shows the 3D geometry of the problem, where
the central ray, xo, arrives at the surface of observation,
& (f(x) = 0), at � = �I at the point xo(�I). In general,
the paraxial ray, x, for this value of � = �I will not be-
long to &. It is necessary to establish a relation between
�y(�I) = (�x(�I); �p(�I)) and�y = (�x;�p), where �x =

R� xo(�I) = (�x1;�x2;�x3) and �p = p(�R)�po(�I) =
(�p1;�p2;�p3).
Regarding figure 2, we observe that the scalar products
< nj�x > and < njpo(�I) > are known and po(�I) =

(po1I ; po2I ; po3I ) is tangent to the central ray at xo(�I). Sim-
ilarly, po(�o) = (po1o ; po2o ; po3o ) and p(�o) = (p1o; p2o; p3o)

are tangent at S to the central and paraxial rays, respectively.
Calling q2ij each entry of Q2, we have:"

�x1

�x2

#
=

"
�11 �12

�21 �22

#"
�p1(�o)

�p2(�o)

#
; (13)

where

�ij = q2ij �
poiI
po3I

:q23j �
pojo
po3o

(q2i3 �
poiI
po3I

:q233): (14)

The problem now consists in solving (13) to find �p(�o) that
produces a new p(�o) and, consequently, a new central ray
for the iterative process.
Calling A the 2 � 2 matrix operator of the system (13), our
problem is to study the behavior ofA when the ray arrives at
a caustic point located in & and, in this case, to find alterna-
tives in order to continue the iterative procedure in a stable
way.

STUDY OF A PARTICULAR VELOCITY MODEL

Let us consider the squared slowness function defined as
follows:

u
2
(x) =

1

v2(x)
= a + bx1 + cx2 + dx3; (15)

2



S
ex

to
C

o
n

g
re

ss
o

In
te

rn
ac

io
n

al
d

a
S

o
ci

ed
ad

e
B

ra
si

le
ir

a
d

e
G

eo
fı́s

ic
a

SBGF246 Two-point ray tracing problem with caustics

Condition Number
of A’.A

&

caustic
curve

Condition Number
of A’.A

&

caustic
curve0

50
100

150
200 0

50

100

150

200

0
1
2
3
4
5
6
7
8

x1(km)

x2(km)

Figure 3: Representation of the condition number (CN ) of
ATA as a function of po(0), with spherical coordinates �

and ' varying in the interval (0; �
2
).

where a, b, c and d are real numbers. For this model, it is
easy to see that the matrix � is equal to zero.
For model (15), when �I 6= 0, the following statements are
equivalent:

i: (xo1(�I); xo2(�I); 0) is a caustic,

ii: <po(0)jpo(�I)>= 0;

iii: det(A) = 0;

iv: minimum eigenvalue of AT
A (�min) equal to zero;

v: CN(A
T
A) = +1;

vi: E1 =
det(A)

tr2(A)
= 0 and

vii: E2 =
det(A)

tr(ATA)
= 0:

WhereA is calculated at �I and CN is the condition number.
To perform computations, model (15) is taken with a = 6:25�
10�2 s2km�2, b = �5:0� 10�5 s2 km�1, c = �6:0� 10�5 s2

km�1 and d = �6:2� 10�4 s2km�1.
This model is certainly simple, but not completely unrealis-
tic. Down to 40 km it gives a good approximation to accept-
able seismic velocity distribution without discontinuities in the
Earth.
The ray field is built in a continuous way as a function of the
take off angles � and '. Let us define a curve  contained
in a spherical surface of center S and radius

p
a such that

the caustic curve in & is its image by the transformation that
for each po(0), gives the exit point (x1; x2; 0) of the ray with
initial slowness po(0). For a fixed �, 'c is the ' for which
po(0) is on .
Figure 3 shows the ratio �max

�min

, the condition number

CN(ATA). For ' near �
2

(po(0) almost horizontal) CN

tends to +1. As ' decreases to 'c, CN decreases to 1,
but, near and before ' reaches 'c, CN grows to +1 on the
caustic. For ' < 'c, there is a strong fall of CN from +1
to almost 1, that value is kept until ' be close to 0. CN is
adimensional.
Graphics of CN are useful to show where the system (13) is
unstable (ill-conditioned, CN assumes high values). When
such regions of instabilities are detected, it is necessary to
have methods to overcame difficulties to solve (13) with a
singular or quasi-singular matrix A
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Figure 4: Schematic representation of the extended central
ray method.

A METHOD TO AVOID THE CAUSTIC ARRIVAL POINTS

Considering figure 4, where the central ray arrives at the
caustic point I, we observe that:

R = x(�B) + �x(�B); (16)

where B is a point situated on the extended central ray and
�B is � at this point.
Combining equation

pR = pB + �p(�B); (17)

where pR and pB are the slowness vector at R and B, re-
spectively, with the eikonal calculated at R, produces:

hpBjpBi+2hpBj�p(�B)i+h�p(�B)j�p(�B)i = 1

v2(R)
: (18)

Solving the system (6) for model (15), we get:

�x(�) = (k1; k2; k3)� (19)

and
�p(�) = (k1; k2; k3): (20)

Then, we get the following system:8>>>>><
>>>>>:

(b=4)�2B + (po1o + k1)�B = x1R
(c=4)�2B + (po2o + k2)�B = x2R
(d=4)�2B + (po3o + k3)�B = 0

((b=2)�B + po1o + k1)
2 +

+ ((c=2)�B + po2o + k2)
2
+

+ ((d=2)�B + po3o + k3)
2 = 1

v2(R)
;

(21)

where k1, k2, k3 and �B are unknown real numbers. The
perturbation �p(0) is given by (20), using the solution of (21).
The basic idea of this method is to avoid the caustic region of
the ray field at &, moving out of the model to a region with a
lower density of rays, by an extension of the central ray. Thus
we move the point on the central ray away from the caustic
in order to avoid instabilities of A. From now on, it is called
of extended central ray method.

NUMERICAL RESULTS

For the model studied here, we can see that when we choose
an initial po(0) that produces a ray arriving near the caus-
tic curve (det(A) ! 0), the first iterations of the iterative
process is characterized by alternating points near the caus-
tic curve.

3
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Figure 5: Successive rays computed during the iterative
process of the paraxial ray method.

This experiment, until the 25th iteration is marked by an al-
ternation of arrival points situated very close to the quasi-
caustic points (179:3; 33:8; 0:0) and (�217:5;�41:1; 0:0).
Figure 5 shows the rays during the process of convergence.
Depending on the degree of the proximity of the caustic
curve arrival point, the oscillation shown can have a very
long duration. This can produce a very poor performance of
the paraxial method and even its divergence.
Keeping the same S, R and po(0) of the last experiment and
using the extended central ray method to escape of caustic
arrival points, the receiverR is found in only one iteration as
shown in the figure 6.

CONCLUSIONS

The extended central ray method is a way to escape from
caustic points of central (current) rays during an iterative
process defined by the paraxial ray tracing method. It trans-
fers the work to a point of the central ray where the ray field
is less dense, by an extension of the central ray.
The two experiments with this method show that it is able
to solve in a fast and accurate way the two point ray tracing
problem near caustics where the paraxial method does not
work well. The performance of the method developed is very
good. Even with the central ray arriving exactly at a caustic
point, the receiver point is found in a single iteration.
It is shown that some properties related to the paraxial ray
tracing operator (such as: determinant, minimum eigenvalue
and condition number) can characterize the vicinity of a
caustic on the surface of observation.
The model studied admits an analytical solution that may be
not directly applied to treat more complicated models, but it
can be useful. As an example, for a large amount of models,
it is possible to find approximations, using the model stud-
ied, in the vicinity of the central ray, to calculate a slowness
vector perturbation, to trace a new central ray in the original
model and to repeat the same sequence of procedures until
to reach the desired results. In addition, we believe that the
results obtained for the particular 3D model studied here can
be verified for more complicated models using the strategy
proposed by the extended central ray method considering
other kinds of peculiarities presented by different models.
The method can find applications in all procedures of three-
dimensional seismic inversion that use the paraxial ray trac-
ing method to trace seismic rays in a seismic velocity model
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Figure 6: Ray 1 arrives at a quasi-caustic point, in which
det(A) = 0:55 � 10�9 km4s�2. Using the extended central
ray tracing method the convergence is obtained in only one
iteration.

with caustic points in the surface of observation. Anyway,
the extended central ray method, applied to the model (15),
can be the base to treat more complicated models and to
suggest alternative strategies for ray tracing near caustics.
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