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Abstract

An adaptive filtering technique was implemented in order to remove random noise from seismic data. The operator
was calculated in the frequency-offset domain (FX), and it could enhance the lateral coherence of seismic events.
For each frequency an optimum Wiener filter was designed following the classical approach using the complete
seismic section. After that, an adaptive algorithm was implemented to actualize the filter coefficients in order to
reduce the output error. This automatic actualization avoided us the use of predetermined design windows. The
adaptive filter was based on a generalized expression of the least-mean square (LMS) filter dealing with complex
frequency input signal. The performance was evaluated on synthetic seismic data contaminated with additive
gaussian noise.

INTRODUCTION

One of the main characteristics of seismic reflections is their lateral continuity, and this continuity is used to distinguish
events from random background noise. The main idea used is simple: signal is defined as that which is predictable from
nearby traces, and noise is unpredictable from nearby traces. All kind of ”coherent seismic noise” (e.g. multiple energy) is
treated as signal by the later definition, and consequently it cannot be eliminated.
Canales (1984) proposed a method for random noise attenuation, that considered linear events in t-x domain manifested
as a superposition of harmonics in the f-x domain. This superposition can be modeled as an autorregresive process (AR),
or if noise is taken into account as an autorregresive moving average process (ARMA). Hornbostel (1991) introduced a t-x
prediction technique that allows changing data without requiring windowing. It consisted on an 2D adaptive least-mean-
square (LMS) filter. After each filter application, the predicted value was kept and the prediction error was used to update
the filter coefficients.
In our approach, the idea was the same, but the filter application was on the f-x complex domain. Such application required
a complex adaptive filter that first predict the frequency values from nearby traces, and secondly use the prediction error to
update the filter coefficients.
Furthermore a generalized expression of the LMS filter was used. It was based on an adaptive technique of predictive
deconvolution implemented by Comı́nguez (1987) in order to remove multiple energy from shallow-water seismic data.
Following Mueller (1972) and Comı́nguez (1987), introducing a non-singular matrix into the recursive algorithm is useful
for achieving more stability while the filter parameters change towards the optimum values. Our model was based on an
AR model with adaptive parameters. If the statistical characteristics of any frequency have considerable changes along the
seismic section, the adaptive property of the filter weights would become important.

THE MODEL

The seismic data was modeled as
y(t; x) = s(t; x) + n(t; x) (1)

where, s(t; x) was the signal and n(t; x) was the random undesirable noise. Assuming events with linear moveout,

s(t; x) = w(t) � �(t+ px) (2)

where w(t) was the seismic wavelet that was considered constant for all the traces, and p was the slowness of the event.
Transforming to the f-x domain,

S(f; x) = W (f) exp(2�ifpx) (3)

The above expression is a periodic function of x for each frequency. A superposition of p complex harmonics (p events with
different slopes) may be modeled as a AR process of order p. If the random noise n(t; x) is taken into account, the exact



model is an ARMA model of order (p,p) with identical parameters for the AR and MA parts.
The classical solution for calculating the AR parameters is the least-square approach for minimizing the error energy
J = E[kSa � dk

2] where E [:] denotes the mean value of the statistical variable, S = (S(f; x); S(f; x � 1); : : : ; S(f; x �
p+ 1)), aH(f) = (a1(f); a2(f); : : : ; ap(f)) is the unknown filter, and in this case the desired output d(f; x) is the next trace
frequency value S(f; x+ 1). In what follows, the dependence on f has been supressed for simplicity. Minimizing the error,
the classical Wiener prediction solution is found:

â = (E[SHS])�1E[SHd] (4)

ADAPTIVE TECHNIQUES

It is possible to find the minimum of J by the
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Figure 1: a) spatial window of the synthetic model. b) processed traces
by an adaptive LMS filter � = 0:05 c) processed traces by an adaptive
GLMS filter � = 0:05.

steepest descent method. Approximating the
true autocorrelation matrix, and the croscorre-
lation vector by its ’instantaneous values’ (Widrow
and Hoff, 1960) a simple noisy gradient descent
algorithm can be derived. It has been named
LMS (least-mean square):

ax+1 = ax�� (S(x)ax � S(x+ 1))SH(x) (5)

The first term inside the brackets is the pre-
diction Ŝ(x + 1) calculated with the operator
at offset x, and � is a convergence real con-
stant.
Following Mueller (1972), we have proposed a
generalization of the algorithm introducing a non-
singular matrix in order to obtain more stability.
It can be demonstrated (Comı́nguez, 1987) that
a good choice for that matrix is the inverse of
the autocorrelation matrix estimate.
For those cases where the input signal can be
modeled as a stationary process, the best over-
all approach is undoubtedly the use of the nor-
mal equations 4. However, for those applica-
tions which occur too frequently in practice with
time-varying statistical properties, the adaptive
techniques offers potential advantage.
Consider a seismic stacked section composed
of events with varying slopes, and strong geo-
logical features, such as folds and faults. The
correlation measurements required for the nor-
mal equations necessitate averages over de-
sign windows and may involve averaging over
significant changes in the data. So the operator
obtained would not provide a satisfactory signal
enhancement.S
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FILTER IMPLEMENTATION

The secuence for FX noise attenuation starts with Fourier transforming the data from t-x to f-x domain. For each frequency,
a predictive complex filter is designed by means of LMS algorithm. The initial operators were chosen as the Wiener filters
calculated by equation 4, replacing E [:] by a simple average, in order to get more stability.
It can be demonstrated (Widrow et al, 1976) that the adaptive constant � for the LMS algorithm of equation 5 must be
chosen satisfaying the following inequalities � = �

L�x2
and 0 < � < 2, where �x

2 is the average power level of the input
signal, and L is the operator lenght (autoregressive order). Naturally, lower � values result in a slow and stable conver-
gence, higher � values are in accordance with rapid changes in order to track varying data but noisy performance.
From the before results, it was not difficult to deduce the generalized LMS (GLMS) algorithm parameters. The �x

2 param-
eter must not be included in the expression of � because it is included in the diagonal terms of the autocorrelation matrix.
On the other hand, as the gradient estimate is multiplied by this LxL matrix, the new � value must be chosen proportional
to 1=L2. Therefore, for the GLMS algorithm, the following expression will be adequate

ax+1 = ax � �(SHS)�1
�
Ŝ(x+ 1)� S(x+ 1)

�
S
H(x) (6)

2



where
� =

�

L2
and 0 < � < 2 (7)

The adaptive procedure was applied both forward and backward in space, that is from near to far offsets or CDP’s, and in the
reverse way. The final frequency-space value was obtained as a simple average. After the complex values for all traces and
all frequencies were predicted, an inverse Fourier transform was performed to get the processed traces back in the time do-
main. SYNTHETIC DATA PROCESSING RESULTS

In order to evaluate the adaptive operator abil-
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Figure 2: a) spatial window of the synthetic model. b) processed traces
by an adaptive LMS filter � = 0:1 c) processed traces by an adaptive
GLMS filter � = 0:1.

ity to predict and enhance lateral coherency, a
set of 100 synthetic traces were created with
two linear events inmersed in gaussian noise
(SNR=3). In figure 1 it is shown a spatial win-
dow of the input traces, where a flat reflector
can be seen from traces 1 to 50, and a dipping
reflector can be seen from traces 50 to 100.
This environment is adequated for an FX adap-
tive prediction because the events, that must be
enhanced, have linear moveout. An adaptive
LMS operator of lenght 3 (equation 5) was used
to process the input traces. Also, an adaptive
GLMS operator of the same lenght was used.
The results are shown in figures 1 and 2. The
performance of both filters was good, but the
LMS showed noisy processed traces due to the
stochastic behaviour of the adaptive filter. While
increasing the convergence constant� for track-
ing the dip change in time-offset domain (phase
shift in FX domain)(figure 2), the operator be-
come unstable giving no effective noise removal.
When the same traces were processed by the
GLMS adaptive operator of equation 6, the per-
formance was increased. The algorithm allowed
us to set the convergence constant � with a
higher value in order to predict the dip change
while leaving the output noise level low. In other
words, the GLMS was more stable than the sim-
ple LMS algorithm.

CONCLUSIONS

Adaptive LMS filters were implemented to en-
hance lateral coherency in synthetic seismic data. The application of the LMS filters (both the simple and the generalized)
in the complex frequency domain has been found profitable. For each frequency, the adaptation was carried out while
the filter was predicting the complex signal using the signal at previous offsets. The performances were quite similar, andS
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evident improvement was obtained processing with the adaptive GLMS filter. Some evidences of instability have appeared
when the convergence-constant � was increased. This fact has forced the use of small values of �, and therefore it has
been difficult for the system to adaptate rapid enough to recognize statistical changes present in the signal. Such problem
can be satisfactory solved with the generalized technique implemented in this paper. The good results obtained applying
the adaptive techniques on synthetic data suggest that this method could be used with advantages on real noisy seismic
data.
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