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Abstract

In this paper we present acoustic reciprocity theorems for the full and one-way wave equations and we discuss
their application in time-lapse seismics.

INTRODUCTION

Reciprocity theorems play an important role in formulating true amplitude operations on seismic wave fields, such as multi-
ple elimination, migration and characterization. In general, a reciprocity theorem interrelates the quantities that characterize
two admissible physical states that could occur in one and the same domain (de Hoop, 1988). One state is identified with
an actual measurement, while the other state can either be a computational state (e.g. migration operators), a desired
state (e.g. multiple-free data) or an other measurement (characterizing time-lapse differences in the reservoir).
In the usual practice of seismic data analysis two classes of wave equations are used, viz. the full wave equation expressed
in terms of the acoustic pressure and particle velocity and the one-way wave equations expressed in terms of down and
up going waves. Accordingly, reciprocity theorems can be formulated for both classes of wave equations. In this paper we
present reciprocity theorems for the full wave field as well as for its down and up going constituents and we discuss some
of their applications.

Reciprocity theorem for the full wave field

In this section we review the scalar form of the acoustic reciprocity theorem of the
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Figure 1: Configuration for
Rayleigh’s reciprocity theorem.

convolution type. We closely follow de Hoop (1988) and Fokkema and van den Berg
(1993). The former author derives reciprocity theorems in the time domain; the latter
authors in the time domain, the Laplace domain and the frequency domain. Here
we only consider the frequency domain.

Basic acoustic equations
In the space-frequency (x; !) domain, the equations that govern linear acoustic
wave motion read

@kP + j!%Vk = Fk and @kVk + j!�P = Q; (1)

where P is the acoustic pressure, Vk is the particle velocity, % is the volume den-
sity of mass, � is the compressibility, Fk is the volume source density of volume
force and Q is the volume source density of volume injection rate. The Latin sub-
scripts take on the values 1 to 3 and the summation convention applies to repeated
subscripts.
We introduce two acoustic states (i.e., wave fields, medium parameters and sources), that will be distinguished by the
subscripts A and B. For these two states we consider the interaction quantity @kfPAVk;B�Vk;APBg. Applying the product
rule for differentiation, substituting equations (1) for states A and B, integrating the result over a volume V with boundary
@V and outward pointing normal vector n = (n1; n2; n3) (see Figure 1) and applying the theorem of Gauss yieldsZ

x2@V

fPAVk;B � Vk;APBgnkdA = �j!

Z
x2V

fPA(�B � �A)PB � Vk;A(%B � %A)Vk;BgdV (2)

+

Z
x2V

fPAQB � Vk;AFk;B + Fk;AVk;B �QAPBgdV:



Equation (2) is Rayleigh’s reciprocity theorem (Rayleigh, 1878).
We conclude this section by considering some special cases.
Unbounded media � Consider the situation in which the medium at and outside @V is homogeneous, unbounded and
source-free in both states. Assume that the wave fields in both states are causally related to the sources in V. Then, if
%A = %B and �A = �B at and outside @V, the boundary integral on the left-hand side of equation (2) vanishes (Bleistein,
1984; Fokkema and van den Berg, 1993).
Physical reciprocity � Assume that the above mentioned conditions are fulfilled and that %A = %B and �A = �B in V as
well. Then the first volume integral on the right-hand side of equation (2) vanishes. Furthermore, consider point sources in
states A and B at xA 2 V and xB 2 V, respectively, according to QA(x; !) = qA(!)�(x�xA), QB(x; !) = qB(!)�(x�xB),
with qA(!) = qB(!) and Fk;A(x; !) = Fk;B(x; !) = 0. Equation (2) thus yields the well-known result

PA(xB jxA; !) = PB(xAjxB; !): (3)

Reciprocity theorem for one-way wave fields

In this section we review the matrix-vector form of the acoustic reciprocity theorem for one-way wave fields (Wapenaar and
Grimbergen, 1996).

We introduce a system of coupled equations for the one-way wave fields P
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Figure 2: Both terms of the inter-
action quantity for the one-way reci-
procity theorem of the convolution
type contain waves that propagate
in opposite directions.

P

�, propagating in the positive and negative depth direction, respectively, originat-
ing from sources S+ and S

�:
@3P = B̂

˜
P+ S (4)

(the hat denotes a pseudo-differential operator), with
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�
P

+
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�

�
;S =
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+

S

�

�
and B̂

˜
=

�
�jĤ1 0

0 jĤ1

�
+

�
T̂ �R̂

�R̂ T̂

�
;

(5)

in which B̂
˜

is the one-way operator matrix, Ĥ1 is the well-known square-root opera-
tor, and R̂ and T̂ are the reflection and transmission operators, respectively.
We introduce two different states that will be distinguished by the subscripts A and
B. For these two states we consider the interaction quantity @3fP

T
AN

˜
PBg, with

N

˜
=
�

0 1

�1 0

�
or, written alternatively, @3fP+

A P
�

B � P

�

A P
+

B g. Apparently, we con-
sider the interaction between oppositely propagating waves (see Figure 2).

Applying the product rule for differentiation, substituting the one-way wave equation (4) for states A and B, integrating the
result over a cylindrical volume V with boundary @V0 [ @V1 (see Figure 3), applying the theorem of Gauss and using the
symmetry relation B̂

˜
y () �N

˜
B̂

˜
�
N

˜
�1, yields the following one-way reciprocity theorem
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Figure 3: Modified configuration for the one-way
reciprocity theorem. The combination of the two
planar surfaces is denoted by @V0; the cylindrical
surface is denoted by @V1.
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˜
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+

Z
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fPT
AN

˜
SB + STAN

˜
PBgdV; (6)

where the contrast operator �̂
˜

is given by

�̂

˜
= B̂

˜ B
� B̂

˜ A
: (7)

Note that the boundary integral over @V1 vanished. For bounded @V1
this occurs when PA and PB satisfy homogeneous Dirichlet or Neu-
mann boundary conditions on @V1. On the other hand, when @V1 is
unbounded this boundary contribution also vanishes under the con-
dition that PA and PB have sufficient decay at infinity.
We conclude this subsection by analyzing reciprocity theorem (6) for
some special cases.
Unbounded media � Consider the situation in which the medium at

and outside @V0 is homogeneous, unbounded and source-free in both states. Assume that the wave fields in both states
are causally related to the sources in V. Then in both states the wave fields are outgoing at @V0 (i.e., P+

A = P

+

B = 0 at
the upper surface and P

�

A = P

�

B = 0 at the lower surface) and it is easily seen that PT
AN

˜
PB = P

+

A P
�

B � P

�

A P
+

B = 0 at
@V0, so the boundary integral on the left-hand side of equation (6) vanishes. Apparently it is not required that the medium
parameters at and outside @V0 are identical in both states, unlike the conditions for the vanishing of the boundary integral
in reciprocity theorem (2).
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Physical reciprocity � Assume that the above mentioned conditions are fulfilled and that %A = %B and �A = �B inside as
well as outside V. Then the first volume integral on the right-hand side of equation (6) vanishes. Furthermore, consider
point sources in states A and B at xA 2 V and xB 2 V, respectively, according to SA(x; !) = sA(!)�(x � xA) and
SB(x; !) = sB(!)�(x� xB). Equation (6) thus yields
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Figure 4: Physical reciprocity for one-way sources
and receivers.

P
T
A(xBjxA; !)N

˜
sB(!) = �sTA(!)N

˜
PB(xAjxB ; !): (8)

For the special case that sA = (s+A 0)T and sB = (s+B 0)T , with s

+

A =
s

+

B , this reduces to (see Figure 4).

P

�

A (xB jxA; !) = P

�

B (xAjxB; !); (9)

Reciprocity theorems for time-lapse seismics

Since in a reciprocity theorem two states interact, it is optimally fitted
to formulate the relation between two measurements in a time-lapse
seismic experiment. State A is associated with the reference wave
field at, say, t = t1, while state B is associated with the monitoring
wave field at, say, t = t2 > t1. It is noted that t2 � t1 is much longer

than the seismic experiment time. In our analysis IR
3 is divided in three domains (Figure 5): V0 is the domain where

there are no differences between the material parameters in the two states, mostly associated with the domain above
the reservoir; the domain Vc, for example associated with the reservoir, where there is a difference between the material
parameters in the two states mostly due to the reservoir production history; and V 0 denotes the complement of V0 [Vc; the
material parameters in this domain may or may not be different; a possible difference in this domain is taken into account
in a subsequent step. The domains are specified as follows

V0 = fx 2 IR
3
; x3 � x

1
3g;Vc = fx 2 IR

3
; x

1
3 < x3 � x

2
3g and V 0 = fx 2 IR

3
; x3 > x

2
3g: (10)

In the next subsections we will discuss the matter for the two reciprocity theorems discussed above.
In order to simplify the analysis we only consider point sources of the
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Figure 5: Configuration for time-lapse seismics.

volume injection type. The source of state A is taken at x = xS, while
the source of state B is taken at x = xR, according to

QA(x; !) = qA(!)�(x� xS) and QB(x; !) = qB(!)�(x� xR):
(11)

Application of reciprocity theorem (2) to domain V = V0 [ Vc yieldsZ
x3=x

2

3

fPA(xjxS)V3;B(xjxR)� V3;A(xjxS)PB(xjxR)gdA

= �j!

Z
x2Vc

fPA(xjxS)(�B(x)� �A(x))PB(xjxR)

�Vk;A(xjxS)(%B(x)� %A(x))Vk;B(xjxR)gdV

+qB(!)PA(xRjxS)� qA(!)PB(xSjxR): (12)

Using physical reciprocity (equation 3) we arrive at

qB(!)PA(xRjxS)� qA(!)PB(xRjxS)

= j!

Z
x2Vc

fPA(xjxS)(�B(x)� �A(x))PB(xjxR)� Vk;A(xjxS)(%B(x)� %A(x))Vk;B(xjxR)gdV +

Z
x3=x

2

3

fPA(xjxS)V3;B(xjxR)� V3;A(xjxS)PB(xjxR)gdA: (13)

The surface integral on the right-hand side of equation (13) takes into account a possible difference of the material param-
eters in V 0, below the reservoir; it vanishes when there is no difference between the two states in V 0.
In the one-way analysis we consider point-sources for downgoing waves in both states, according to

SA(x; !) = (s+A(!) 0)
T
�(x� xS) and SB(x; !) = (s+B(!) 0)

T
�(x� xR): (14)

Application of reciprocity theorem (6) to domain V = V0 [ Vc yieldsZ
x3=x

2

3

fP+

A (xjxS)P
�

B (xjxR)� P

�

A (xjxS)P
+

B (xjxR)gdA

=

Z
x2Vc

P
T
A(xjxS)N

˜
(B̂

˜ B
(x)� B̂

˜ A
(x))PB(xjxR)dV� s

+

B(!)P
�

A (xRjxS) + s

+

A(!)P
�

B (xS jxR): (15)
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Using physical reciprocity (equation 9) we arrive at

s

+

B(!)P
�

A (xRjxS)� s

+

A(!)P
�

B (xRjxS) (16)

=

Z
x2Vc

P
T
A(xjxS)N

˜
(B̂

˜ B
(x)� B̂

˜ A
(x))PB(xjxR)dV�

Z
x3=x

2

3

fP+

A (xjxS)P
�

B (xjxR)� P

�

A (xjxS)P
+

B (xjxR)gdA:

As in the previous case, the surface integral on the right-hand side of equation (16) vanishes when there is no difference
between the two states in V 0.

Examples

The material parameters for State A and State B, representing the monitor and
Reference and monitor models
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Figure 6: Velocities of State A (moni-
tor state) and State B (reference state).
Temporal changes occur in the first,
third and fifth layer.

the reference cases, respectively, are shown in Figure 6. For this specific case
the boundary integral in equation (13) at different depth levels is calculated and
we discuss the numerical results. Time-lapse changes are modeled inside the
acquisition domain Vacq � V0, x3 < 150m, and inside Vc, 250m < x3 < 700m,
at 250m < x3 < 400m and 500m < x3 < 700m. The interfaces are numbered
from 1 to 5. Source and receivers are located at a depth of 10 m. In Figure 7
left, the difference of the monitor and reference scattered wave fields is shown.
The difference reflection events are numbered according to the interfaces in
Figure 6. Observe the phase differences between the reference and monitor
reflections, which are top-down cumulative. The boundary integral of equation
(13) is calculated at the bottom of the acquistion domain, see Figure 7 middle,
and at the bottom of the first reservoir layer, see Figure 7 right, at 150 and 400 m,
respectively. In Figure 7 middle the difference refection 1 has disappeared while
difference reflection 2 is a pure amplitude difference without a phase difference.
In Figure 7 right the difference reflections 1,2 and 3 have vanished while 4 is
now a pure amplitude reflection. We can conclude that the boundary integral
simulates the difference of two time-lapse experiments for which no temporal
contrast exists above the particular surface over which we calculate the integral.

Discussion and conclusions

In this paper we have presented two formulations of the reciprocity theorem. Both theorems show how the acoustic states
at the surface of some bounded domain are related to contrast functions and source distributions in this domain. In the
reciprocity theorem for the full wave field the contrast function is expressed in material differences (��, �%), while in the
reciprocity theorem for the one-way wave fields it is expressed in scattering operators (R̂, T̂ ).
The reciprocity theorem for the full wave field has proven its functionality for example in the removal of multiple reflections
(van Borselen et al., 1996) and in velocity replacement (Smit et al., 1998). The reciprocity theorem for the one-way wave
fields has been the point of departure for the derivation of seismic imaging techniques for finely layered media (Wapenaar,
1996). As we have shown both reciprocity theorems are useful for time-lapse seismic imaging and inversion (Fokkema et
al., 1997).
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Figure 7: The difference of the monitor and the reference scattered wave fields with temporal changes identifiable as
phase shifts in difference reflections (left). The boundary integral of equation (13) at 150 m (middle) and 400 m (right).
Equivalent to a difference wave field without temporal contrasts above 150 m (middle) and 400m (right)
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