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Abstract

Properties of inhomogeneous plane waves propagating
in a viscoelastic anisotropic medium are investigated.
The slowness vector p is described by the so-called
mixed specification. In it, the vector p is expressed
in terms of two given real-valued, mutually perpendic-
ular vectors (one of them specifying the direction of
propagation), and of a free complex-valued parameter
σ. The parameter σ must be determined so that
the slowness vector p satisfies a constraint relation
following from an equation of motion for viscoelastic
media. In this contribution, σ is determined by solving
a complex-valued polynomial equation of the sixth
degree. The used algorithm is quite general. It can be
used for homogeneous as well as inhomogeneous plane
waves propagating in elastic or viscoelastic, isotropic or
anisotropic media. It is shown that the inhomogeneous
plane waves propagating in anisotropic viscoelastic me-
dia exhibit certain phenomena, not known from elastic
anisotropic or viscoelastic isotropic media. For example,
the inhomogeneous plane qP wave may propagate with
the same phase velocity as one of inhomogeneous plane
qS wave. It is also shown that the attenuation angles of
inhomogeneous plane waves can attain values greater
than π/2 even for very weakly inhomogeneous plane
waves.

Introduction

A harmonic plane wave in a viscoelastic medium can be
written as

u(x, t) = U exp
(

− iω(t − p · x)
)

. (1)

Here U and p are complex-valued amplitude and slow-
ness vectors, respectively. The slowness vector p can be
expressed in terms of two real-valued vectors P and A
(see e.g. Aki and Richards (1980)):

p = P + iA. (2)

The vector P is called the propagation vector, the vector
A the attenuation vector. The propagation vector P is

perpendicular to the wavefront, i.e. it is parallel to the
wave normal N. It is oriented in the direction of the
propagation of the phase front. The attenuation vector
A is perpendicular to the plane of constant amplitudes.
It is oriented in the direction of the exponential decay of
amplitudes. If we denote by M a unit vector parallel to
A, we can introduce an attenuation angle γ (00 ≤ γ <
1800) as an angle made by N and M:

cos γ = N · M . (3)

The plane wave is called homogeneous if γ = 0, and in-
homogeneous if γ 6= 0. The vectorial component of the
attenuation vector A into the wavefront is the wavefront
attenuation vector denoted by d. The wavefront atten-
uation vector d is, by definition, perpendicular to N. Its
size d is the inhomogeneity strength. For d non-zero,
the plane wave is inhomogeneous, for d = 0, the plane
wave is homogeneous.

Eq.(2) for the complex-valued slowness vector p can be
expressed in the following form:

p = C−1(N + iδM) . (4)

Here C and δ are two real-valued and non-negative quan-
tities, to be determined. C is the phase velocity. Quan-
tity δ represents the ratio of the lengths of the attenu-
ation and propagation vectors, δ = |A|/|P |. It is called
the attenuation amplitude ratio. The phase velocity and
the attenuation amplitude ratio can be determined from
the complex-valued equation, which the slowness vector
p in (4) must satisfy:

det[aijklpjpl − δik] = 0 . (5)

Eq.(5) is the condition of solvability of the equation

aijklpjplUk = Ui , i = 1, 2, 3 , (6)

which results from an equation of motion for viscoelastic
media. In (5) and (6), aijkl are complex-valued density-
normalized viscoelastic parameters, which are generally
frequency dependent. pi and Ui are components of the
slowness and amplitude vectors of the considered wave,
respectively. Inserting Eq.(4) into Eq.(5), we can deter-
mine C and δ. Unfortunately, we obtain a system of two
coupled equations for C and δ, which cannot be decou-
pled into two individual equations, one for C, the other
for δ. Consequently, it is, in general, very complicated
to solve the system. Moreover, for certain values of N
and M, the system may yield non-physical solutions, for
example the negative values of the square of the phase
velocity C. In such a case we speak about forbidden di-
rections N,M of the slowness vector, see Krebes and Le
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(1994) or Carcione and Cavallini (1995).

Červený (2003) proposed an alternative specification of
the complex-valued slowness vector, called mixed speci-
fication. In the mixed specification, the slowness vector
p is expressed in terms of two given real-valued mutually
perpendicular vectors n and d and one complex-valued
parameter σ as follows:

p = σn + id . (7)

In (7), n is a unit vector, N = n if the real part of
the quantity σ is positive and N = −n if it is negative.
The vector d is the wavefront attenuation vector. The
quantity σ can be determined by inserting Eq.(7) into
Eq.(5). This yields:

det[aijkl(idj + σnj)(idl + σnl) − δik ] = 0 . (8)

Eq.(8) is a polynomial equation of the sixth degree with
complex-valued coefficients. For the coefficients, see Fe-
dorov (1968) (note missprints in the coefficients with
powers 5 and 2). Eq.(8) has six roots corresponding to
qS1, qS2 and qP plane waves propagating in the di-
rections of ±n. Various methods can be used to solve
Eq.(8), see Červený (2003). Here we shall solve Eq.(8)
directly, using the Laguerre’s method, see Press et al.
(1986).

For a found σ, the complex-valued slowness vector can
be determined from (7). Here, more than in the slowness
vector, we are interested in the values of the phase veloc-
ity C, of the cosine of the attenuation angle γ and atten-
uation amplitude ratio δ. From comparison of Eqs.(3)
and (4) with (7), we get for these quantities

C = 1/|Reσ| , δ = C[(Imσ)2 + d · d]1/2 ,

cosγ = ε Im(σ)/[(Imσ)2 + d · d]1/2 . (9)

Here
ε = sgn(Reσ) . (10)

The proposed algorithm of the computation of the slow-
ness vector, based on Eqs.(8)-(10), is simple and quite
general. It can be applied both to homogeneous and in-
homogeneous plane waves, propagating in isotropic and
anisotropic, perfectly elastic or viscoelastic, media. The
algorithm does not yield non-physical solutions and re-
moves problems of forbidden directions.

Numerical tests

We consider the matrix of complex-valued parameters
used by Gajewski and Pšenč́ık (1992). The parameters
given in Table 1 specify a hexagonally symmetric medium
with the horizontal axis of symmetry. The anisotropy is
due to aligned, partially liquid saturated cracks in an
isotropic host rock. Kinematic viscosity of the fluid is
0.04 St (1 Stokes= 10−4 m2 s−1), the degree of the
saturation is 70%. We can see that the parameters A44,
A55 and A66 describing the qS-wave propagation have
zero imaginary parts. For the above set of parameters,

we calculated phase velocity C, cosine of the attenuation
angle γ and the attenuation amplitude ratio δ of one qP
and two qS waves as a function of the vector n situated
in the vertical plane containing the axis of symmetry,
i.e. in the symmetry plane. We made calculations for
inhomogeneity strength d varying from zero to infinity.
The vector d is chosen so that it is also situated in the
symmetry plane and points to the left from n. One of
the qS waves is polarized perpendicularly to the plane
of symmetry and we call it the SH wave. The other,
polarized in the symmetry plane is called the qSV wave.
The SH plane wave is fully controlled by parameters A44

and A66. As the imaginary parts of these parameters are
zero, the SH wave represents, in fact, an inhomogeneous
plane wave propagating in a perfectly elastic medium.
Notwithstanding, we treat the SH wave in the same
way as inhomogeneous plane qP and qSV waves. This
illustrates that the proposed algorithm works safely even
for inhomogeneous plane waves propagating in perfectly
elastic anisotropic media.

In Figure 1, we can see phase velocity sections for 6
selected values of the inhomogeneity strength d, d=0.,
0.3, 0.4, 0.44, 0.5 and 1. Red colour corresponds to the
fastest phase velocity sheet, blue colour to the slowest.
The sheet with intermediate velocity is black. Due to
mutual intersections, the colours do not always represent
physical wave sheets. For d varying between 0. and 0.1,
the phase velocity changes are negligible. The two qS-
wave velocity sections coincide along the horizontal axis.
The qP -wave velocity sheet is separated from them. For
d=0.3, C is significantly reduced, qP -wave phase veloc-
ity being more affected. We can observe non-symmetric
behaviour of phase velocity sections caused by non-zero
d. For d = 0.4, the qP -wave velocity section is still sep-
arated but clear deformations of velocity sections can be
observed. They become points of contact of qP - and
qS-wave velocity sections for d = 0.44. In the direction
of the points of contact the qP and qS waves propagate
with the same phase velocity. For d greater than 0.5, all
three velocity sheets intersect each other, the velocities
of all waves decrease. For d greater than 100., all veloc-
ities are effectively zero. Let us note that in viscoelastic
isotropic media, the relevant curves for both qP and qS
waves would be circular.

In Figure 2 we can see how the cosine of the attenuation
angle depends on d. Red colour is now used to denote
positive values of cosines, i.e. values of γ less or equal to
π/2. Blue colour denotes negative values of cosines, i.e.,
γ greater than π/2. For d=0., cosines of the attenuation
angles γ of qP and qS waves are unit, i.e., γ = 0, which
indicates homogeneous waves. For all nonzero values of
d, it is easy to identify the SH wave, which exhibits
properties of an inhomogeneous plane wave propagating
in a perfectly elastic medium (as A44 and A66 are real-
valued). The cosine of the SH wave has four lobes, two
red and two blue, which, effectively, do not vary with
varying d. The cosine is very close to zero, which means
that the attenuation angle is close to π/2. It may be
smaller or greater than π/2 depending on the direction
of propagation. In contrast to it, the attenuation angle γ
of inhomogeneous plane waves propagating in perfectly
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(5.28,−0.127) (1.76,−0.043) (1.76,−0.043) (0., 0.) (0., 0.) (0., 0.)
(8.59,−0.014) (2.59,−0.014) (0., 0.) (0., 0.) (0., 0.)

(8.59,−0.014) (0., 0.) (0., 0.) (0., 0.)
(3., 0.) (0., 0.) (0., 0.)

(2.39, 0.) (0., 0.)
(2.39, 0.)













Table 1: Parameters of a viscoelastic medium of hexagonal symmetry

elastic isotropic media always equals π/2 and does not
depend on the direction of propagation.

Let us now discuss the attenuation angles γ of qP and
qSV waves. For d=0.0001, cosine corresponding to qP
wave remains nearly unit. It is only slightly reduced in
the direction perpendicular to the axis of symmetry. Co-
sine of the qSV wave is also unit but only outside the
direction of the axis of symmetry and the direction per-
pendicular to it. In these directions, the cosine becomes
nearly zero. The cosine of the qSV wave thus has four
lobes. For d = 0.001, the cosine of the qP wave is
unit only along the axis of symmetry. It has minimum
values in the direction close to the normal to the axis
of symmetry. Non-symmetry of the picture starts to be
observable. The lobes of the qSV wave are reduced and
narrower. For d = 0.01, cosine of the qP wave has a
form of inclined infinity symbol with two small blue lobes
perpendicular to it. Thus for d = 0.01, even qP wave
attenuation angle becomes, in certain directions, larger
than π/2. The qSV wave has still four-lobe character.
Starting with d = 0.1, cosines of all waves become in-
sensitive to the variation of d. They remain such even
for the limiting case of infinite d. This means that the
plots for d greater or equal 0.1 show limiting values of
the attenuation angle. The red lobes indicate how close
γ can get to π/2. The blue lobes indicate how far behind
π/2 the attenuation angle can get. The limiting values
of γ corresponding to red lobes specify forbidden direc-
tions discussed by Krebes and Le (1994) and Carcione
and Cavallini (1995). We can see that the forbidden di-
rections have greatest extent in the directions close to
45o from the axis of symmetry. Their extent is negligi-
ble along the axis of symmetry or perpendicularly to it.
Let us note again that in viscoelastic isotropic media, all
curves for qP and qS waves would be circular and red,
as the attenuation angle γ is always less then π/2 there.

Figure 3 shows behaviour of the attenuation amplitude
ratio δ as d varies. The colours have the same mean-
ing as in Fig.1. The quantity δ is rather small and it
practically does not vary between d=0. and 0.0001. δ
corresponding to the qP wave has a form of the infinity
symbol. In the directions perpendicular to the axis of
symmetry δ is close to zero. The value of δ correspond-
ing to SH wave is effectively zero in every direction. δ
corresponding to the qSV wave has a four-lobe form.
For d = 0.001, δ of the SH wave becomes nonzero
and it is independent of the direction. For d=0.01 and
0.1, δ increases. δ of the qP wave is represented by
the outer curve, the inner curves correspond to the qS
waves. From d=1. to infinity the picture remains the
same. The curves corresponding to all three waves in-
tersect each other.

Conclusions

Although we concentrated only on a symmetry plane
of an viscoelastic medium of hexagonal symmetry, we
could observe some phenomena unknown from elastic
anisotropic or viscoelastic isotropic media. We found
that in certain situations, viscoelastic anisotropic me-
dia can contain directions, in which an inhomogeneous
plane qP wave propagates with the same phase velocity
as one of the inhomogeneous plane qS waves. We also
found that even for very small values of the inhomogene-
ity strength d, the attenuation angle γ can attain values
greater than π/2.

Since we concentrated on the plane of symmetry in the
present study, we were able to identify individual waves
even if they were interconnected. The identification
will be difficult outside symmetry planes. An important
planned step which will make the identification possible
will be computation of the complex-valued polarization
vectors of the studied waves.
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Fig. 1: Variation of the phase velocities with inhomogeneity strength d.
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Fig. 2: Variation of cos(γ) with inhomogeneity strength d.
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Fig. 3: Variation of the attenuation amplitude ratio δ with inhomogeneity strength d.
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