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Abstract

The time seismographic interpretation can contain errors
associated to the incorrect conformation of the seismic
events. This fact can even carry economical losses due
to exploratory or/and exploitatory well mis-positioning, or
still hide a favorable prospecting situation. This is par-
ticularly evident in regions of great geological complex-
ity and/or strong lateral velocity variations. The recent
advances in the intensive computational technology with
production of high computational capacity machines, par-
ticularly the parallel architectures, have woken up cres-
cent attention to the depth imaging. The 2D/3D Paraxial
Ray-Tracing (Popov, 1977) , (Popov and Ps̆enc̆ik, 1978b),
(Popov and Ps̆enc̆ik, 1978a) will exert, among other func-
tions, the 2D/3D Green’s function simulator, acting as the
heart of a series of applications, such as velocity analysis
by reflexion tomographic inversion, AVA, Kirchhoff model-
ing, amplitude correction, etc. The 3D pre-stack depth mi-
gration (PSDM) will use the travel time table obtained by this
procedure to implement the image condition to the Kirch-
hoff’s integral imaging operator and, eventually, to the re-
verse time migration (RTM).

This work presents the results of building the image
condition by the solution of a system of 21 non linear first
order differential PARAXIAL equations for dynamical ray
tracing. This corresponds to a generalization of a kinematic
version already developed (Cunha, 1999a), with adaptive
step time control between the ray points. These travel
times will be subsequently employed in the Kirchhoff’s in-
tegral operator for PSDM. The evaluation of the image con-
dition by solving a non linear first order differential equa-
tion (EIKONAL’s method) (Faria and Stoffa, 1994) is in gen-
eral fast, but presents some serious inconveniences, such
as: a) High degree of instability in complex media (Popov,
2002) where “Caustic” phenomena will fatally occur, in-
creasing by several orders of magnitude the rate of the er-
ror, even in points far from it. b) Determine only the first
arrivals. c) Doesn’t allow the determination of the maxi-
mum field’s image condition since this requires evaluation
of travel time for multiple arrivals. The main motivation for
using RTM is to employ the full acoustical - elastic wave
equation to propagate the stress field, where it is implicit
the presence of a punctual Green’s function centered in the
source - receptor stations, which makes the implementa-
tion of the maximum field image condition MFIC natural and
simple.

The experience with real data indicates that the RTM
results for complex media are often superior than that ob-
tained by other methods. However, its main limitation is the

great computational cost which is proportional to the num-
ber of source - receptor points. The parallel processing,
particularly LINUX’s Clusters, (Soares, Filho and Bulcão,
André and De Bragança, R. S. N., 2002) will gradually favor
the conventional RTM, although the computational costs
still have some impact. The use of coarse transverse grid
(Mufti et al., 1996) (Cunha, 1997) can reduce the computa-
tional costs, but at the expense of problems like numerical
anisotropy (Alford et al., 1974) (Cunha, 1999b). However,
with the development of the “Multi Source” version of the
RTM (Cunha, 2002) this seems no longer be true. We be-
lieve that part of this qualitative superiority could be credited
just to the MFIC, as supported by this work.

Theoretical Foundations
The image condition ����	 
���������� is the time necessary by
the wave field to move from a punctual source ��� with coor-
dinates �� ��	 to each grid point �� 
���������� . The finite difference
method is specially adequate to the building of maximum
field image condition and to the amplitude correction. The
method will follow the scheme described in the following
code lines:
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This simple code stage is capable to detect the time����	 
 �� � needed by the maximum amplitude’s field to move
from the source to the scattering point �� , as well as to
determine the amplitude correction,

) 
 �� �*$ � �"!�# 
 �� � , for
each point of the depth grid. However, the seismogram
injection must be made at reverse time order, beginning
with the last sample, which is the maximum time of reg-
ister + �"!�# , until the first sample. Then, the image con-
dition of the source point �&� necessary to freeze the field
shall be �-,&. 
 �� �/$ + ��!�#10 ����	 
 �� � (see figure-1-B) which
corresponds exactly to the time necessary for the field to
move from the receptor station 243 , with coordinate �� ,&. , to
the scattering point in subsurface. In this work we have
employed the SEG/EAGE velocity model (Aminzadeh et
al., 1997) to which the image condition for a source point
was determined by three methods: Schneider’s modified
method, which only furnishes the first arrivals; Finite Differ-
ence method, which gives the maximum field image condi-
tion, and the method proposed herein, that is, by PARAXIAL
ray-tracing which in this version gives also the MFIC. This
method is based:

1. In the solution of the kinematic ray-tracing system of
equations eq-1, which furnishes the ray trajectories��5
�65� and slowness vector �7 $98: , where ; � is the time
interval, ;<� the arc length interval, = the velocity, and6

a parameter given by the second system of equa-
tions 1.
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2. The dynamical system eq-2 is applied to extrapolate
the travel time + 
 ��?>�� from the ray points to the time+ 
 ��?� in the grid points, where @A�� and @ �7 are, respec-
tively, the variations of the position and slowness vec-
tors, with respect to the central ray, B null matrix, C
identity matrix and

8D�E the matrix
8DGF�H�I 8�J :�KMLH # . H # 	ON of the

second derivatives of the velocity field, all PRQSP .;; 6UT ��A
�65��7 
�6��1V $XW �7 
�6��8D�Y F 8: K I�Z# I\[ L]L N(^  ; 6;4+ $ = D 
�65�'$ = 
�6�� ; 6;<�
(1);; 6_T @A���
�6��@ �7 
�65�`V $ T B C8DaE 
�6�� B V T @A���
�6��@ �7 
�65�bV (2)

In the first stage described above, the kinematic ray-tracing
gives the travel time in the ray points + 
 �� > � by the adap-
tive method, which achieves the magnitude rate of c-Bedgf to
the relative error. In the second stage the travel time in the
rectangular grid points + 
 ��g� (see fig-1-A) is evaluated by
employing the Paraxial ray-tracing system of equations 2.
This stage decrements the magnitude rate of the relative
error by a factor of c�B<dgh , reaching the same level of the
modified Schneider’s method.

Summary and Conclusions

1. Figure-2-A shows the SEG/EAGE model, a rigorous
test to the ray-tracing, because even its smoothness
version presents ijikBjBkl`mj� of variation in the velocity
field along about c-BjBnl of distance, in the borders of
the salt body.

2. Figure-2-B shows the field of maximum amplitude
obained during the determination of the finite differ-
ence image condition, by using a source frequency
of PjBjo1p , superimposed to the ray’s path. We can
perceive the perfect coherence between the regions
of higher amplitude values with the regions of higher
density of rays, although they are numerical methods
of completely distinct conceptions.

3. Figure-2-C shows the maximum field image condition
computed by the finite difference method with PjBno1p
of source frequency. The discontinuities in the time
field are associated to the fact the maximum ampli-
tude’s field can eventually arrive to the grid point after
the first arrival.

4. Figure-2-D shows the superposition of the snapshot
of the finite difference propagating field at time

�R$cjq Pjijrj� , with the isochronal of the maximum ampli-
tude’s field also by the finite difference method. We
can see the perfect catching of the maximum field.

5. Figure-2-E shows the modified Schneider’s method
image condition (Faria and Stoffa, 1994) which de-
termines only the first arrivals, is smooth, doesn’t
present problems in shadow zone, and is fast.

6. Figure-2-F shows the superposition of the snapshot
at time

�'$ cnq P4ijrn� , with the isochronal of Schneider’s
method. We can observe that the salt body’s scat-
tering field, which has amplitudes several orders of
magnitude rate superior than the first arrival, will be
lost in the imaging process.

7. Figure-2-G shows the travel time field of the PARAX-
IAL method superimposed to the rays. We can
observe the the discontinuities between the region

of higher amplitudes of the scattering field and the
shadow zone.

8. Figure-2-H shows the superposition of the snapshot
at time

�G$ cnq Pjijrn� , with the isochronal of the max-
imum amplitude’s field obtained by the method pro-
posed herein. The strong amplitudes of the field scat-
tered by the salt body will be incorporated in the im-
age condition contributing to the quality improvement
of the depth Kirchhoff’s imaging. The arrow points
out to a shadow zone, where we can see the max-
imum amplitude catching is not satisfactory. But, In
this region the amplitude field is very weak and will
not contribute significantly to the migrated field. How-
ever, the insertion, if desired, of only one ray can
solve this problem without impact in the time of pro-
cessing, as we can see comparing the shadow zone
of the left side of fig-2-B (which have only one ray),
with the left side of fig-2-H, where the the maximum
field was perfectly determined.

9. We can verify that, in regions of geological com-
plexity, part of the imaging deficiency of the Kirch-
hoff’s method when compared to the methods which
make use of full wave equations, like RTM, can be
attributed to the first arrival image condition.

10. In regions of low degree of geological complexity with
small variations in the velocity field the image condi-
tions, of maximum field and first arrival, will be almost
coincident.

11. Table-1 shows that the maximum field by the Parax-
ial 2D method was three times slower than the 2D-
Schneider’s and three times faster for the 3D model.

12. The proposed method in spite of being three times
faster than Schneider’s furnishes another 36 ad-
ditional informations to the seismic imaging (AVA,
acoustical elastic - Inversion, tomography etc).

13. Table-2 shows a comparison among the travel time
field for the three methods, specifically: the correla-
tion factor eq-3, the error expectancy, and the stan-
dard deviation. In these calculus it were used all
samples, including the shadow zone, which favor the
Schneider’s method. The amplitudes in the shadow
zone are very small giving a small contribution to
the imaging. In this zone the error by the proposed
method grows distorting the values to the error ex-
pectancy and standard deviation.Ets �n� 
 �  ��u&v�w �%$ x ��  ���u&v�w4yz x ��  ���u&v�w4y x ��-u�v�w  ���u&v�w4y  (3)
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A: Paraxial Ray. B: Punctual source image condition.

Figure 1:

Model Finite Difference � : Schneider � : PARAXIAL �n�� �2D SEG/EAGE �<�<� ��� ���n�O� �<�\�a�e�e� 3.0
3D Model �k�e����� �?�e���j <�e�  ��\¡a�<�e� .32

Table 1: Processing time by the three methods: Finite Difference, Schneider and the proposed.

¢n£4¤�¥%¦¨§�¦M©Oª ¢-«�¤�¥%¦¨§5¦¨©gª¬R4®4® ¤�¢�¦¨¢k¯-°&±�ª Schneider PARAXIAL¬�² £t³ � ´e´<´e´< <´e < �� ¬�² «G³ �<� �<�e�<����¡g��¡¢ ² : Finite Diff. µ1¶]· ¢ ²¹¸ ¢j£ · º ³ � �<�O�a�e� µ1¶]· ¢ ²»¸ ¢-« · º ³ � �<�e�O¡��¼ ² £�³ � �<�O�<��� ¼ ² «½³ � �<�O�a¾<�¬ £�« ³ � ´e´<´<´e < g¡4���¢ £ : Schneider - µ1¶]· ¢ £ ¸ ¢ « · º ³ � �e�e�<´<¾¼ £�« ³ � �<�e�<¾< 
Table 2: Correlation: Finite Difference, Schneider e PARAXIAL.

Eighth International Congress of the Brazilian Geophysical Society



2D/3D Paraxial maximum field Green’s funtion generator 4

A: SEG/EAGE model B: Finite difference ¿ÁÀ�ÂgÃ�ÄkÅ plus rays

C: ÆeÀ�ÂgÃ�ÄkÅ by Finite difference D: isochronal, Ç�ÈÊÉ�Ë Ì�Í�Î s

E: ÆOÀ�ÂgÃ�ÄkÅ by Eikonal Schneider’s solver F: isochronal, Ç�ÈÏÉ�Ë Ì�Í�Î s

G: ÆOÀ�ÂgÃ�ÄnÅ by Paraxial Ray-tracing H: isochronal, Ç�ÈÏÉ�Ë Ì�Í�Î s

shadow zone

Ð

Figure 2: SEG/EAGE model: image condition PT0300
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