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Abstract 

Current methods for depth imaging require an accurate 
velocity model in order to place reflectors at their correct 
spatial locations. Techniques to derive the velocity model 
can fail to provide this information with the necessary 
degree of accuracy, especially in areas that are 
geologically complex. 

The inverse series, a multi-dimensional direct inversion 
procedure, has the ability to image reflectors at the 
correct depth with an inadequate velocity model. In this 
paper, numerical examples are presented that 
demonstrate this ability. Convergence of a leading order 
imaging series is illustrated with 1-D acoustic models 
when the errors between the reference and actual velocity 
are large. The effectiveness and robustness of this 
algorithm warrant its generalization to a multi-dimensional 
earth, and for more complicated earth model types, both 
of which are the focus of current work. 

 

Introduction 

Our inability to identify and define hydrocarbon targets 
beneath difficult-to-estimate complex media, e.g., beneath 
salt, has been and remains a significant impediment to 
effective exploration and production. Current imaging and 
inversion methods require an adequate velocity model to 
produce an adequate image. Frequently, we cannot 
satisfy that requirement under complex geologic 
conditions.  

The objective of this research is to directly respond to that 
challenge by developing a fundamentally new capability 
aimed at accurately imaging and inverting seismic data 
without knowing or determining the properties of the 
overburden. In principle, the inverse scattering series has 
the potential to achieve that objective (Weglein et al., 
2000).  

This abstract documents part of a long-term research 
project investigating the use of the inverse scattering 
series to perform the task of imaging at the correct depth 
without knowing or determining the actual velocity model. 
The goal of seismic depth imaging is to produce a 
spatially accurate map of the reflectivity below the Earth's 
surface. The inverse series has the potential to achieve 
this objective without an accurate velocity model. The 
issues to be resolved are: (1) where within the inverse 
series does the subseries with that capability reside? (2) 

what are the limitations on the magnitude and duration of 
velocity error that it can accommodate? (3) how many 
terms in the subseries would be required to achieve a 
specified degree of accuracy? and (4) what are the data 
requirements and prerequisites to allow the algorithm to 
be effective? 

The inverse series is a multidimensional direct inversion 
procedure and as such it performs the tasks of removing 
free surface and internal multiples, locating reflectors at 
their correct spatial location (imaging), and inverting 
amplitude information for the actual perturbation (target 
identification) all in terms of reference, not actual, medium 
properties. By adopting a strategy of task separation, 
Weglein et al. (1997) successfully identified two separate 
subseries of the inverse series that remove free surface 
multiples and attenuate internal multiples from a 
multidimensional Earth. The advantages of seeking and 
isolating subseries that perform single tasks include lower 
demands on the fidelity of the input data (e.g., band-
width, signal-to-noise, etc.), and better convergence 
properties of the series algorithm. Innanen and Weglein 
(2003) are investigating the ability of the inverse series to 
simultaneously perform more than one task (specifically 
the two tasks of imaging and target identification). In this 
paper, we present results of a subseries that performs the 
sole task of imaging in depth. 

Terms in the inverse series that are responsible for 
locating reflectors in their correct spatial location have 
been identified by Weglein et al. (2002). Early numerical 
tests of the effectiveness of these terms at imaging 
primaries for the simplest of 1-D models were 
encouraging (Shaw, 2001). The identification, 
development and testing of the imaging subseries have 
moved to more complicated 1-D layered models that have 
both significant errors in velocity and duration of that 
error. In this abstract, we present examples of these 1-D 
numerical tests and demonstrate convergence, 
numerically and analytically, of a leading order imaging 
series (Shaw et al., 2003). The number of terms in the 
subseries required for accurate imaging depends on the 
magnitude and duration of the velocity error. 

 

Method 

The perturbation, V, is defined as the difference between 
the actual wave operator, L, and the chosen reference 
medium’s wave operator, L0. For a one-dimensional 
constant density acoustic medium with velocity profile c(z) 
and a homogeneous reference medium with velocity c0, V 
has the form 

α2
0kV =                                                                  (1) 

where the index of refraction α(z)=1–c0
2/c2(z), k0=ω/c0 

and ω is the angular temporal frequency. In this context, 
the inverse series is 
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In the case of a plane wave incident field, the first term in 
the inverse series is 

zdzDz
z
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where D(z’) is the data measured at the surface z’ = 0. 
This “trace integration” formula places reflectors at depths 
z according to  

2/0tcz =′                                                               (4) 

where t is the recorded two-way travel time to the 
reflector. Equation (3) is the inverse Born approximation, 
which is the foundation for current depth imaging 
algorithms. It is linear in the measured values of the 
scattered field, D. The second term in the inverse series 
is quadratic in the data. The portion of the second term 
that is responsible for correcting the depths of the 
mislocated reflectors in α1 has been identified by Weglein 
et al. (2002) as 
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Since α1 is a sum of Heaviside functions, equation (2) 
produces delta functions at each interface weighted by 
minus a half times the integral of α1 down to the output 
depth, z. The corresponding portion of the third term in 
the inverse series that is responsible for imaging is 
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which produces weighted derivatives of delta functions 
centered at each mislocated interface. The sum of these 
and higher order imaging terms constitutes the 1-D 
leading order imaging subseries (LOIS) is (Shaw et al. 
2003) 
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In the next section, we present a numerical example of 
this algorithm. In essence, it constitutes a Taylor Series 
for the difference of two Heaviside functions at each 
mislocated reflector. When the series converges, the 
reflectors shift from their wrong depths (given by α1) 
towards their correct depths (given by α). Fourier 
transforming equation (7) and recognizing the presence of 
the series for exp(x) where 
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we can write a closed form for the leading order imaging 
subseries 
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From equation (9), we see that the leading order imaging 
series amounts to a stretch of the inverse Born 
approximation. The stretch itself is proportional to the 
integral of the Born approximation, and is the leading 
order approximation to the actual shift. In the frequency 
domain, this algorithm relates to a phase shift migration 
where the phase shift is determined directly from a linear 
inversion of the data. 

Since the closed form equation (9) can be derived for any 
finite x(z), we can conclude that the 1-D leading order 
imaging series is convergent as long as k0 and the 
integral of the perturbation, α, are both finite. Both of 
these requirements are realizable in practice. 
Furthermore, we can deduce that the rate of convergence 
is greater for small values of these two quantities. 

 

Analytic Example 

 

 

Consider the single layer model depicted in Figure 1. We 
assume that the multiples have been removed from the 
data. Then, in a normal-incidence plane wave experiment, 
the recorded wavefield consists of two primary events: 
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where t1 and t2 are the two-way travel times to the first 
and second reflectors, respectively and 
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Figure 1. Single layer 1-D Earth model. 
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Then the first term in the imaging series corresponds to a 
migration-inversion with the constant velocity, c0 

( ) ( )ba zzRzzRz ′−+−= H~H4)( 211α    (11) 

where H denotes the Heaviside function and 
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Calculating higher order terms in the leading order 
imaging subseries yields 
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                                                                                  (12). 

This relates to the series for a shift from the wrong depth 
zb’ to towards the actual depth zb: 
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where the coefficients that are a function of (zb’ – zb) in 
equation (13) are the leading order (in the data) 
approximations in equation (12), recognizable from the 
relationship 

( ) ( )( )...2 2
11 ++−−=− ′′ RRzzzz abb . 

Hence, equation is the leading order imaging subseries. 
The next section illustrates this algorithm for a band-
limited synthetic example. 

 

Numerical Example 

Consider the 1-D constant density acoustic model 
described in Table 1. We use the simple example of a 
normal incidence plane wave experiment to illustrate the 
behavior of the leading order imaging subseries. 

The left-hand panel of Figure 2 displays the synthetic data 
for the model described in Table 1 resulting from a 0-125 
Hz band-limited incident field. The right-hand panel 
compares the actual perturbation, α, with the inverse Born 
approximation, α1, (the first term in an imaging series). 
The simplest reference medium, a homogenous whole 
space (c0 = 1500 m/s) has been chosen.  

Table 1. Depth and velocity pairs that define a 1-D 
synthetic model. 

Layer Depth to top of 
layer (m) 

Velocity (m/s) 

1 0 1500 

2 70 1600 

3 100 1700 

4 120 1550 

5 140 1650 

6 160 1700 

 

The right-hand panel of Figure 1 illustrates how the first 
term in the series, which is linear in the data, erroneously 
locates deep reflectors because the reference velocity 
does not agree with the actual velocity below the first 
layer. In addition, the amplitude of α1 disagrees with that 
of α. The tasks of correcting the location and amplitude of 
α1 reside in the second and higher order terms of the 
inverse series. The subseries for amplitude inversion 
(target identification) is being investigated (Zhang and 
Weglein, 2003).  

Figure 2 illustrates the performance of the leading order 
imaging subseries acting on the input data in Figure 1. 
The green line is the cumulative sum of n terms in the 
series, where n is indicated in the title above each panel. 
Each new term involves the addition of an (n – 1)th 
derivative of a band-limited delta function (sinc function) 
at each mislocated interface. After 27 terms in the 
imaging series, the second reflector has shifted towards 
its correct depth, 100 m, and after 40 terms, the next 
deeper reflector has been located 120 m. After 66 terms, 
the imaging series has converged at all interfaces and 
has succeeded in moving the reflectors towards their 
actual depths. The number of terms required for 
convergence of the imaging series is proportional to the 
distance that an interface has to move. This, in turn, 
depends on the cumulative error in the velocity (difference 
between the actual and reference) from the surface down 
to the reflector being imaged. 

The right-hand panel in Figure 2 also illustrates the closed 
form solution (Equation 9) in blue. This solution has the 
advantage of not suffering from numerical artifacts due to 
performing so many derivatives. 

 

Conclusions 

Analytic and numerical examples of a leading order 
imaging subseries have been used to demonstrate the 
intrinsic ability of the inverse series to perform depth 
imaging in the absence of the actual velocity model. This 
series converges more rapidly for lower maximum 
frequencies in the input data, and for smaller cumulative 
errors between the reference and actual velocity above 
the reflector. Issues of rate of convergence are mitigated 
by the compact closed form expression for the imaging 
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series which also avoids numerical errors that might occur 
when summing individual terms. 
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Figure 2. Synthetic data for a normal incidence 
experiment (left), actual perturbation , α (right, 
black), and inverse Born approximation, α1 
(right, red). 

Figure 3. Cumulative sum of terms in the leading order imaging subseries. The actual perturbation α is shown 
in each panel black, the green trace is the cumulative sum of n terms in the series for αLOIS, where n is given in 
the title above each panel, and the blue line in the righmost panel is the closed form solution.  


