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Abstract 

The objective is to extend the generality of previously 
published formulae for the integrand inherent in the 
calculation of out-of-plane relative geometrical spreading. 
I obtain an integrand applicable to rays propagated in the 
symmetry plane of a monoclinic anisotropic medium. 
Integrands corresponding to "unrotated" orthorhombic and 
transversely isotropic media are derived as special cases.   

Introduction 

Two-dimensional (2D) models of the subsurface are 
frequently used for seismic ray modelling, especially in 
cases where the variations of model parameters in the 
direction normal to the model plane are negligible. The 
assumption of two-dimensionality is beneficial with 
respect to efficiency of computations and simplifies the 
ray tracing considerably. Even for a 2D model, however, a 
realistic simulation of wave propagation should be three-
dimensional (3D), since, the wave amplitude will be 
influenced by in-plane as well as out-of-plane effects. The 
out-of-plane geometrical spreading can be obtained by 
including an additional integral equation in the dynamic 
ray tracing system. Out-of-plane dynamic ray tracing for 
anisotropic media has been described by Mispel (2001) 
for a transversely isotropic medium with a vertical axis of 
symmetry (i.e., a VTI medium) and by Ettrich et al. (2002) 
for an orthorhombic medium with symmetry planes 
coinciding with the three main planes of the model 
coordinate system ("unrotated" orthorhombic medium). 

The objective of this paper is to extend the generality of 
previously published formulae for the integrand in out-of-
plane dynamic ray tracing. I present a formula pertaining 
to the most general of the 2D anisotropic media, namely, 
the monoclinic medium. I also show that the new formula 
is consistent with previously presented forms of the 
integrand. A more complete description of ray tracing in a 
2D anisotropic medium can be found in Iversen (2003b). 

The context 

I consider rays propagating in a 3D monoclinic anisotropic 
medium, specified with respect to a Cartesian model 
coordinate system with coordinates (x1, x2, x3). The 
vertical plane x2 = 0 is assumed to be a plane of mirror 
symmetry, and the paper is particularly concentrated on 
the special situation when rays are confined to this 
symmetry plane ("in-plane" propagation). The slowness 
vector and group velocity vector in a ray point x = (x1, x2, 
x3)T are denoted, respectively, p = (p1, p2, p3)T and v = (v1, 
v2, v3)T. The components p2 and v2 are zero in all ray 

points. The start and end point of the ray are denoted by 
symbols S and R. 

The density-normalized elastic coefficients are 
represented here in the Voigt notation. For the monoclinic 
medium with a symmetry plane x2 = 0, the matrix of 
elastic coefficients has the form 
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Furthermore, the geometric properties of rays in any 
anisotropic medium are determined by the characteristic 
equation 

 ( ) 0I =−GΓdet . (2) 

Here Γ is the Christoffel matrix (3 x 3), I is the identity 
matrix (3 x 3), and G is the eigenvalue corresponding to 
the wave under consideration. For ray propagation 
confined to a plane, there are three possible waves; the 
P- and SV-waves with in-plane polarization vectors, and 
the SH-wave with polarization vector directed normal to 
the plane. The matrix Γ - GI has a corresponding cofactor 
matrix, 

( )ID Gcof −≡ Γ , (3) 

which is essential in the theory of rays in anisotropic 
media. 

Out-of-plane geometrical spreading 

Following Cerveny (2001, 359), the relative geometrical 
spreading due to a point source at S is 

( ) ( ) 21/)y( S,RdetS,R Q=L . (4) 

The 2 x 2 matrix Q(y)(R,S) is given with respect to so-
called wavefront-centered Cartesian coordinates 
(wavefront orthonormal coordinates), for which the third 
coordinate axis is perpendicular to the wavefront at R. 
Since Q(y)(R,S) corresponds to point source initialization, 
we have Q(y)(S,S) = 0. If the ray is confined to the plane x2 
= 0 and the slowness vector component p2 is zero, the 
matrix Q(y)(R,S) will be a diagonal matrix. Therefore, the 
relative geometrical spreading factorizes, 

( ) ( ) ( )S,RS,RS,R ⊥= LLL || , (5) 

where the in-plane and out-of-plane geometrical 
spreadings are defined, respectively, by 

( ) ( ) 21
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/)y( S,RQS,R =⊥L . (6) 
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The matrix element elements Q11
(y) and Q22

(y)  can be 
obtained, respectively, from in-plane dynamic ray tracing 
and from a closed-form integral (see the next section) For 
simplicity, the superscript (y) is dropped in the following. 

Out-of-plane dynamic ray tracing 

For point source initialization at the point S, the out-of-
plane dynamic ray tracing system can be defined as 

22
22 T
dt
dQ

= , 022 =
dt
dP

, (7) 

where t is the traveltime along the ray. The equations (7) 
show that the quantity P22 is constant (=1) along the ray, 
with the consequence that the matrix element Q22 can be 
obtained by the integral  
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Ettrich et al. (2002) showed that the integrand T22 is given 
by: 
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The latter expression is valid for an anisotropic medium 
with a symmetry plane x2 = 0; in other words, media with 
monoclinic or higher-order symmetries. Ettrich et al. 
(2002) took expression (9) as a start point for further 
derivations. Here, however, I have used a different 
approach, which takes as a start point the general 
expression for the quantity T22 valid for 3D arbitrarily 
anisotropic and heterogeneous media (Cerveny, 2001; 
Iversen, 2003a). Thereby, I obtain the formula 
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The quantities D11, D22, D33, and D13 are elements of the 
cofactor matrix D [equation (3)], and the denominator D is 
given by D = D11 + D22 + D33 . The quantities K and L are 
symmetric 2 x 2 matrices, with definitions 
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The formula (10) is valid for P/SV-rays and SH-rays 
propagating in the symmetry plane x2 = 0 (p2 = 0) of a 
monoclinic medium. For a P/SV-ray we have D22 = 0 and 
D = D11 + D33, For an SH-ray we have D11 = D33 = D13 = 0 
and D = D22.  

Note that it is also possible to obtain the formula (10) on 
the basis of equation (9). Ettrich et al. (2002) presented a 
formula similar to (10), but the generality was limited to an 
unrotated orthorhombic medium. By setting A15 = A35 = 
A46 = A25 = 0, it is easily shown that my formula (10) is 
consistent with Ettrich et al.'s result. 

For a VTI medium, one can show that the characteristic 
equation (2) factorizes solely due to the requirements on 
the medium parameters. Thus, in this case it is rather 

straightforward to obtain the integrand T22 by 
differentiating the relevant factor of the characteristic 
equation (corresponding either to P/SV- or SH-rays) twice 
with respect to the slowness component p2. Here, 
however, I have derived the integrand T22 directly from 
the formula (10). The result for P/SV-rays is 
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where 

( )25513
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Formula (12) is consistent with the derivation done by 
Mispel (2001). For an SH-ray in a VTI medium, I obtain 
simply 

6622 . (14) 

The formulae (10) and (12) include the eigenvalue G, 
which is 1 for a ray integrated without errors. For rays 
contaminated with small errors, recent tests (Mispel, 
2001) indicate that insertion of the actual value of G, 
corresponding to the inaccurate ray, has a stabilizing 
effect on the ray propagation. 

Conclusions 

Ray theory for the calculation of the out-of-plane 
geometrical spreading, corresponding to a symmetry 
plane within a monoclinic anisotropic medium, is 
addressed in this paper. I provide a generalized 
expression for the integrand in the out-of-plane dynamic 
ray tracing. The formula is consistent with recently 
published formulae for media with less general anisotropy 
than the monoclinic medium [VTI medium (Mispel, 2001); 
unrotated orthorhombic medium (Ettrich et al., 2002)]. The 
formulae for the integrand pertaining to a monoclinic or an 
orthorhombic medium can not be used in the vicinity of 
shear-wave singularities. However, the presented 
integrands (12) and (14) for out-of-plane dynamic ray 
tracing in VTI media can be used without problems in 
such situations. 
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