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Abstract

The normal-incidence elastic compressional reflection co-
efficient admits an exact, simple expression in terms of
the acoustic impedance, namely, the product of the P-
wave velocity and density, at both sides of the interface.
With slight modifications a similar expression can, also ex-
actly, express the oblique-incidence acoustic reflection co-
efficient. A severe limitation on the use of the above two
reflection coefficients in analyzing seismic reflection data
is that they provide no information on shear-wave veloci-
ties that refer to the interface. In this paper, we address
the natural question of whether a suitable impedance con-
cept can be introduced for which arbitrary P-P reflection
coefficients can be expressed in an analogous form as
their counterpart acoustic ones. We formulate this prob-
lem by considering the mathematical conditions to be sat-
isfied by such a general impedance function. Although no
closed-form exact solution exists, our analysis provides a
general framework for which, under suitable restrictions of
the medium parameters, possible impedance functions can
be derived. In particular, the well-established concept of
elastic impedance and the recently introduced concept of
reflection impedance can be better understood. Concern-
ing these two impedances, we examine their potential for
modelling and for the estimation of the AVO indicators of
intercept and gradient. For typical synthetical examples,
we show that the reflection impedance formulation provides
consistently better results than those obtained using the
elastic impedance.

Introduction

The compressional wave (P-P) reflection coefficient in
acoustic media (S-wave velocity

�����
) is given by
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where
# " and %'" denote the density and P-wave veloc-

ity, respectively, at the incident side (*) �,+�-
and at the

opposite side (*) �/.�-
of the reflecting interface, ��� is

the acoustic impedance function, � � is the incidence an-
gle and � 
 is the transmited angle, satisfing the Snell’s law% 
0��132���� � %�����132	�4
 . For elastic media (S-wave velocity�65�7�

), the expression for the P-P reflection coefficient is

also the ratio between two quantities,� �98�: # ! % ! � ! ��;< : # ! % ! � ! ��;�= (2)

However, the numerator ( 8 ) and denominator (
<

) do not
have the simple form as in the acoustic case (see, e.g., Aki
& Richards (1980)).

As seen by the recent literature (see, e.g., Connolly (1999);
Mallick (2001)), it makes sense to look for a quantity
(impedance) �?>@� ( # ! % ! � ! � - for which the P-P reflection
coefficient can be given, at least approximately, by an ex-
pression of the form � �7��
��A���� 
 � � � = (3)

The reflectivity function

Roughly speaking, the reflectivity function is a measure
of the variation of the reflection coefficient as we move
along a ray within a layered media. To quantitatively ex-
press this variation, we consider that the elastic charac-
teristics,

#
, % and

�
, as well as the incident angle, � ,

are functions of a single variable, B , that parameterize
the ray. This variable can be, e.g., depth or time. In
other words, we consider, along the ray, the vector quantityC (*B -�� ( # (*B - ! % (*B - ! � (*B - ! � (*B -�- . With this understanding,
we can recast the reflection coefficient, as given by equa-
tion (2), in the form� > � (*B ! D B - ��8�: C (*B - ! C (*B � D B - ;< : C (*B - ! C (*B � D B - ; = (4)

where
D B is the parameter increment, chosen to be suffi-

ciently small. In the above formula B and B � D B replace
indices 1 and 2, respectively. For example,

# (*B - replaces# � , % (*B � D B - replaces % 
 , etc.

The P-P elastic reflectivity function E can be defined as the
limit, EF(*B - �HG 13IJ�KMLON � (*B ! D B -D B = (5)

Using the exact formula for the P-P reflection coefficient
(Aki & Richards, 1980), we readily obtain the expression

EF(*B - �QPR+ �AS � 
UTV
XW #ZY.�# � P ++ �A% 
 T 
 W % Y. % � P S � 
�T[
\W �]Y� !
(6)

where the prime denotes derivative with respect to to B andT
is the ray parameter given by

T � ��132���^�% . Under the
assumption of a flat-layered medium, the ray parameter is
assumed to be constant along the ray.

Using the reflectivity function definition (5), and approximat-
ing the derivatives in equation (6) by their corresponding
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discrete differences, i.e., a YcbdD a ^ D B , we arrive at the
well-known first-order approximation for

�
(Aki & Richards,

1980), � b EF(*B - D B b +. PR+ �eS � 
% 
 ��132 
 � W D ##� +. P ����� 
 � W D %% (7)

� P S � 
% 
 ��1f2 
 � W D �� =
For sufficiently small incidence angles, g\h 2 
 � b ��132 
 � , and
then we may rewrite equation (7) as the well-known Inter-
cept and Gradient formula given in Shuey (1985), namely� b � �ji ��132 
 � ! (8)

with � � +. P D ## � D %% W ! (9)

and i � +. D %% � . � 
% 
 P D ## � . D �� W = (10)

The problem of finding a function � satisfying equation (3)
exactly is equivalent to that of determining a solution of the
differential equation resulting from the computation of the
limit in (5), assuming the desired form (3):G 13IJ�K�LONlk +D B � (*B � D B - �e� (*B -� (*B � D B - � � (*B -�m � +. � Y (*B -� (*B - �

(11)+. P + ��S � 
UTV
 W #ZY# � +. P ++ ��% 
 T 
 W % Y% � P S � 
nTV
 W �]Y� =
The Impedance Function

The Elastic Impedance function o � proposed by Connolly
(1999) is obtained by equalling equation (7) to

D �p^ . � (the
discrete version of � Y ^ . � ) and applying difference calcu-
lus, with the additional assumption that � and the ratioq �7� 
 ^�% 
 are constant. The same result can be found
directly from solving equation (11) under the mentioned as-
sumptions:

�r> o � �ts N # + �eS q ��132 
 � % ����� 
 � � ��u q ��1f2 
 � ! (12)

where
s N is a normalization constant (Whitcombe, 2002).

The question now is if there is a Reflection Impedance
function

� � , solution of equation (11), for all possible
choices of % ,

�
and

#
. Clearly, the solution is not unique,

since any multiple of it is also a solution. Equation (11)
admits a closed-form solution only if

�
has a functional de-

pendence on
#
, i.e.,

� > � ( #v- . A particularly simple formula
is obtained by assuming a relationship of the form

#w�yx���z
,

or equivalently,
# Y ^ #w�${
� Y ^ � , where

x
is some constant of

proportionality and
{

is a constant. In this case, if
��Y�5���

,

�l> � � ��| N # %} + ��% 
 T 
 ��~v�[�M� . : . � { ; � 
nT[
�� ! (13)

where
| N is a constant.

In the case of a normal incidence, both elastic ( o � ) and the
reflection (

� � ) impedance functions reduce to a multiple of
the acoustic impedance ( ��� ), so the approximation for the
reflection coefficient remains exact. However, for the case
of non-normal incidence in acoustic media (

�@���
), the

elastic impedance approximation for
�

does not reduce to
the exact one given by equation (1), as opposite to the re-
flection impedance approximation, where the exact expres-
sion is maintained.

Applications

In order to analyse the accuracy of o � and
� � functions

presented above, we consider a simple two-layer model
with large contrasts of the parameters:

Table 1: P- and S-wave velocities and densities

Medium % [km/s]
�

[km/s]
#

[g/cm � ]
Layer 1 4.50 2.10 2.70
Layer 2 3.00 1.40 2.20
Contrast 0.40 0.40 0.20

We compare the exact reflection coefficient with its first-
order approximation (see equation (7)), as well as the
impedance-type approximations of equation (3) under the
use of the elastic impedance of equation (12) and reflection
impedance of equation (13), respectively. Observe that the
ratio

� ^�% in order to offer the best conditions for the elas-
tic impedance approximation. The values for the constantss N and

| N are irrelevant: any choice will produce the same
value for the approximation of

�
. We also consider the two

possibilities for the incidence layer: layer 1 (noncritical re-
flections) or layer 2 (post-critical reflections). The resulting
approximations for the reflection coefficient is shown in Fig-
ure 1.

We have also compared the performance of the three
different approximations of

�
for the estimation of the

intercept, � , and gradient, i , attributes, according to
equation (9). The model parameters are the same as in
the previous experiments. We have added a white noise
of ratio 1:3 to the exact reflection coefficient’s curve and
then apply least-squares techniques to recover � andi . The table below summarizes the inversion results,
where, again, we can observe that the inverted attributes
using the reflection impedance approximation are of better
accuracy than all the others.

Table 2: Results of the least-squares inversion

Incidence Exact Linear EI RI

A
+	��.

– 0.30 – 0.23 – 0.21 – 0.28.O��+
0.30 0.57 0.53 0.33

B
+	��.

0.24 – 0.18 – 0.31 0.12.O��+
– 0.24 – 1.40 – 0.88 – 0.47

Figure 2 shows the approximation for
�

using the inverted
parameters and the corresponding approximation formu-
las.
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Figura 1: P-P reflection coefficient.

Conclusions

We have discussed the problem of determination and use
of impedance functions generalizing the simple expression
of the P-P reflection coefficient under normal incidence in
acoustic/elastic media under oblique incidence in acous-
tic media, to oblique-incidence in elastic media. We have
shown that for arbitrary selection of densities and P- and
S-velocities, there is no closed-form impedance function
fulfills the required task. Under additional, ad hoc, assump-
tions, impedance functions can be defined that provide
useful approximations to the P-P reflection coefficients.

Our simple, but typical, numerical experiments have shown
that the reflection impedance provide significantly better re-
sults, both for modelling and AVO inversion. The reflection
impedance approximation has the best performance in all
cases. In the case of post-critical reflections, the results are
far better: all other approximations do not follow the correct
shape of the exact curve. Therefore, there is a significant
gain in accuracy provided by the reflection impedance ap-
proximation, as compared to the one that uses the elastic
impedance.

Current research is being done to employ a similar ap-
proach using, however the reflection impedance function.
First results in this direction are shown in Santos et al.
(2002).
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Figura 2: AVO curves
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