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Abstract

The image wave equation for depth remigration is a par-
tial differential equation that is similar to the acoustic wave
equation. In this work, we determine the stability conditions
that have to be met when solving the image wave equation
by finite differences. The stability criterion exhibits a strong
wavenumber dependence. Where higher horizontal than
vertical wavenumbers are present in the data to be remi-
grated, stability may be difficult to achieve. Numerical tests
demonstrate that the implementational form of the chosen
FD scheme can be essential to obtain results with a limited
numerical error even in situations where stability cannot be
theoretically guaranteed.

Introduction

Seismic remigration is an imaging technique that envisages
the construction of an improved migrated section for an up-
dated macrovelocity model on the basis of a previously mi-
grated section as obtained with a different initial macrove-
locity model. If the two macrovelocity models do not differ
too much, one generally calls the imaging procedure that
corrects the image a “residual migration” (Rothman et al.,
1985). Where significant differences between both mod-
els are allowed, the process is referred to as remigration
(Hubral et al., 1996) or velocity continuation (Fomel, 1994).

The sequence of images of a certain reflector as subse-
quently migrated with varying migration velocities creates
an impression of a propagating wavefront. This “propagat-
ing wavefront” was termed an “image wave” by Hubral et al.
(1996). The propagation variable, however, is not time as
is the case for conventional physical waves as described,
e.g., by the acoustic wave equation, but the migration ve-
locity.

For homogeneous media, Hubral et al. (1996) have studied
the kinematic behaviour of these image waves as a func-
tion of the constant migration velocity. By treating them
like conventional acoustic waves, they derived partial differ-
ential equations, termed “image wave equations,” that de-
scribe the “propagation” of the reflector image as a function
of migration velocity for both, time and depth remigration.

The image wave equation for time remigration has already
been theoretically studied and implemented, successfully
applied to real data from ground-penetrating radar (Jaya
et al., 1999, see also references there). In this work, we
derive the image wave equation for depth remigration in 3-
D, choose an FD scheme for its implementation, as well
as theoretically and numerically study its consistency and
stability.

The 3-D image wave equation for depth remigra-
tion

We consider a zero-offset experiment with coincident
sources and receivers at positions described by coordi-
nates

�
and � on the planar earth surface. Let ��� be a

reflector image that was obtained by a migration of zero-
offset data using an incorrect migration velocity, ��� . The
aim is to construct from ��� the reflector image � that would
have been obtained if the data had been migrated with the
correct velocity � .
The input reflector image � � is considered as a set of
points � � . Each of these points � �
	���
���������������� in the
input velocity model is kinematically equivalent to a surface��	�����
������ in the output velocity model, i.e., both generate
the same zero-offset reflection-time surface � � � � � � , i.e.,

� � � � � ��	  � ! � �#" 
$��%'&�� � " ����%(&
�)%	  ��� ! � �#" 
 � ��%(&*� � " � � ��%'&+� %�-, (1)

The envelope of these equivalent surfaces provides the
new reflector image, in the same way as a physical wave-
front is the envelope of Huygens waves originating at sec-
ondary sources along the previous wavefront. Therefore,
these equivalent surfaces are referred to as “Huygens im-
age waves” (Hubral et al., 1996).

A Huygens image wave can be constructed as the enve-
lope of the isochrons of all points on the traveltime surface� � � � � � . Taking the derivatives of identity (1) with respect to�

and � , equaling them to zero and substituting the results
back into equation (1) yields the following formula for the
3-D Huygens image wave,

��	�����
������(	 �$. /� %� � %� & /� %� " � %�0 ��
 " 
 � � % &1��� " � � � %32 ,
(2)

Solution of equation (2) for � yields an equation of the form� 	546��
7�8�$�8�)� , where 4 is the eikonal of the image wave.
We now substitute � 	146��
��������)� in equation (2) and differ-
entiate implicitely with respect to 
 , � , and � . Then, we use
the three resulting expressions to eliminate 
 " 
 � , � " � � ,
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and ��� from equation (2). Denoting the partial derivatives
of 4 by 4�� , 4�� , and 4�� , respectively, the result reads

4 %� &
4 %� & 4 %� " 4 � 4�� 	 � , (3)

This is the 3-D image eikonal equation. The last step
is to find a second-order differential equation for the “im-
age wavefield” � ��
7�8�����)� such that a substitution of the ray
ansatz � ��
7�8����� � 	 ��� ��
��������)���7� � " 46��
��8�����)��� yields the
above eikonal equation. Here, ��� is the amplitude of the
migrated reflector image, i.e., the image wave, and �7� � � is
the source wavelet as a function of velocity. The simplest
differential equation that fulfills the above requirement is

�	�
� & �	��� & �	��� & � � �	
�� 	 � , (4)

To arrive at the eikonal equation (3) upon substitution of the
above ray ansatz in equation (4), one needs to substitute �
by 46��
��������)� . This substitution is valid on the image wave-
front � 	 4 itself. However, points off the wavefront are
also involved in the propagation of the image. As we will
see in the numerical example, this leads to a stretch of the
wavelet in the propagating image.

Finite differences

We consider a grid of depth points with initial point at��
	�8����������� � and a discretized velocity axis. The image wave-
field at a given grid point ��
�� ����� �����#� 	 ��
 � &����-
���� � &� �-����� � &���� �)� , as calculated for a certain migration ve-
locity ��� 	 � � &! �� � , is denoted by � � ��" �#" � . On this grid,
we approximate the derivatives in equation (4) by finite dif-
ferences. For the spatial derivatives, we use fourth-order
approximations, and for the mixed derivative, we choose a
first-order scheme forward in � and � . Using these approx-
imations for the derivatives in the image wave equation (4)
and isolating � ��$&%��" �#" � $'% , we find the following FD scheme,

� �($'%��" �#" � $&% 	 " ���)� � � �/  � �
*'+-, %�.� " / � & +0, %�.� " / � & +0, %�.� " / �21& � ��$&%��" �#" � & � � ��" �#" � $&% " � � ��" �#" � � (5)

where
+ , %�.� " / � ,

+ , %�.� " / � , and
+ , %�.� " / � denote the spatial fourth-

order finite-difference approximations of the spatial second
derivatives � �
� , � �3� , and � ��� , respectively. The initial condi-
tion is given by the original migrated section for the velocity� � . As boundary conditions, we use that the field outside
the given target zone of the input section should be zero.

Since the FD scheme (5) is an implicit one, its computation
would require the solution of a linear system of equations
in each step. Such a procedure would, of course, be ex-
pensive to realize, particularly for large migrated sections.
For this reason, we prefer to treat equation (5) as an explicit
scheme. This requires an additional boundary condition to
initialize the loop in � . We choose again a homogeneous
boundary condition.

Consistency, stability, and grid dispersion.

In order to actually use the FD scheme (5), its consistency
and stability need to be investigated, so as to find condi-
tions for the step size � � as a function of the medium pa-
rameters and the grid intervals �-
 , �-� , and �-� . As can be
readily verified, scheme (5) is indeed consistent with the
differential equation (4). To determine the conditions under
which this scheme is stable, we apply the von Neumann cri-
terion (see, e.g., Thomas, 1995). It consists of substituting
the Fourier component

� � ��" �#" � 	 � �543607	8�9 �;:��-�-
=< 43607	8
9 � :>�(� �>< 43607	8�9 ��:>��� �?<
(6)

in scheme (5), where
�

is the so-called amplification fac-
tor. An FD scheme is known to be stable, if @ � @&A / . The
grid dispersion is described by the phase of

�
Strikwerda

(1989).

From substitution of the discrete Fourier transform (6) in
equation (5) and solution of the resulting equation for

�
, we

find the expression� 	 B�C�ED �#F�G�H � " / � & / � (7)

where

C 	 ���I � � � � � ��J�-
$��%LK�MON % :>�(�-
 P I & K�MON % :>�?�-
 RQ
& � �I �S� � � �-��J� � ��%)K�MON % : � �-� P I & K�MON % : � �-� TQ
& � �I � � � � �-��J� � � % K�MON % : � � � P I & K�MON % : � � � UQ , (8)

Thus, the von Neumann condition @ � @0V / provides the sta-
bility condition � V C V K�MON % : � � � , (9)

Note that equation (9) must be satisfied for all wavenum-
bers : � , : � , and : � involved in the remigration problem to
be solved. This can be a difficult condition to meet. The
simplest situation is the case where wavenumbers and grid
increments are of the same size, such that �-
 	��-�-	�� �
and : � �-
XWY: � �-�ZW[: � � � . In this situation, the above
condition can be divided by K�M\N % F G H �% to yield

� A B � maxI � min

� ��-� &]B � maxI � min

� �� � &]B � maxI � min

� �� � V /	=^ � �_V /B � min� max
� ��� (10)

where we have used that
I & K�MON % F�G
H �% V B . Moreover, we

have replaced ��� and ��� by their maximum and minimum
values, � max and � min, respectively. The right-hand-side ex-
pression of the last inequality in equation (10) can be mul-
tiplied by 3 if the horizontal wavenumbers are very small,
i.e., : � W`: �aAbA : � .
The term K�MON % F G H �% on the right-hand side of equation (9)
has an important consequence for the stability of the FD
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scheme (5). If there are vertical wavenumbers :>� present
in the data for which this term is very close to zero, it will
be very hard very small values of � � might be needed to
make the scheme stable.

For the grid dispersion, we have to analyze the phase of
the von Neumann amplification factor

�
. In a Taylor series

up to second order in � � and the spatial grid sizes �-
 , �-� ,
and � � , we find

����� � 	`��� � � W � % � �:>� �S� � � & � / � %� : � � %� � � % � � " � � � % � �/  �S� � � % � � �
(11)

where � % 	 : %� & : %� & : %� and � is the image-wave propa-
gation velocity. Note that � depends on � � , i.e., the propa-
gation velocity is different at different depths. Moreover, we
observe that the image wave equation possesses intrinsic
dispersion since the main term of � depends on the spa-
tial frequencies as �����-� . Grid dispersion can be reduced
to a minimum if we can choose � � and � � such that the
second an third terms in expression (11) cancel each other.
This implies

� � 	 /	 : %�� % �S�� � � � W 
 %%�� 
�
��� � � if :>�aW`:>�bW`:>�%� 
�
��� � � if : � W`: � AbA : � ,
(12)

This expression means that grid dispersion is depth depen-
dent. Thus, it cannot be fully eliminated from the propa-
gating image as long as we wish to work with a constant
grid size. Still, we can try to approximately satisfy equation
(12) at least for the estimated values of the velocity and the
depth of the target reflector.

Numerical tests

To demonstrated the FD image-wave remigration, we had
to restrict scheme (5) to the corresponding 2-D one, in or-
der to meet the computational limitations. We have used
migrated data from a simple earth model consisting of two
homogeneous halfspaces, separated by a horizontal reflec-
tor at a depth of 550 m. The velocities above and below the
reflector are � % 	 I km/s and � % 	 I , � km/s. The simulated
seismic survey is a zero-offset experiment with 401 source-
receiver pairs, located at every 10 m between -2000 m and
2000 m along the 
 -axis.

The input data to the remigration where generated by a
zero-offset depth migration with a wrong migration velocity
of � � 	  

km/s. The resulting depth image is depicted in
Figure 1a. Note that the wrong migration velocity causes
the reflector to be imaged at a wrong depth of about 370 m.

This input section was then remigrated using FD scheme
(5). The grid size of the depth region was �-
�	�� ��	 / � m
and � � 	 B m/s. This is in accordance with the 2-D version
of stability condition (10) (where the factor / � B is replaced
by
I ��� ). Parts b and c of Figure 1 show two snapshots of

the image wave for velocities � 	  , B km/s and � 	 I km/s,
the latter being the true medium velocity. We observe that
the reflector image in Figure 1c is remigrated to the correct
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Figure 1: Image wave propagation. Direct implemen-
tation. (a) Input data for the remigration example:
data after migration with a wrong migration velocity of������� km/s. (b) Remigrated image for ����� � ! km/s.
(c) Remigrated image for �"�$# km/s.

depth of 550 m. There are, however, quite large regions
where the image is obscured by noise, which is many or-
ders of magnitude larger than the actual image. In fact, in
Figure 1, the error was zeroed out wherever it exceeds the
amplitude of the reflector image.

The reason for this noise to arise, although stability condi-
tion (10) is satisfied, is a violation of the stricter condition
(9) at the tips of the migration boundary effects (smiles).
Here, the image contains much higher wavenumbers in the
horizontal than in the vertical direction. As a consequence,
the right-hand side of equation (9) becomes smaller than
the left-hand side. This causes an instability that gives rise
to the error.

There is, however, a way to obtain a better remigration re-
sult with scheme (5). Figure 2 depicts the results of an FD
remigration using scheme (5) in reverse implementation.

In other words, the results in Figure 2 where obtained by
solving equation (5) for � ��$&%��" �#" � .

The reason for the different results of Figures 1 and 2,
although obtained from implementations of the same FD
scheme and thus governed by the same stability condi-
tions, is the multiplication by � � in scheme (5). In the
direct implementation, numerical errors generated at one
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Figure 2: Image wave propagation. Reverse imple-
mentation. (a) Input data for the remigration example:
data after migration with a wrong migration velocity of��� ��� km/s. (b) Remigrated image for � � � � ! km/s.
(c) Remigrated image for �"�$# km/s.

step are multiplied by increasing values of � � in subse-
quent steps, leading to an exponentially increasing error. In
the reverse implementation, decreasing values of � � lead
to a damping of the error.

As a final observation, let us comment on the pulse stretch
of FD remigration (Figures 1 and 2). It is much stronger
than the conventional pulse stretch due to depth migration,
which is proportional to the migration velocity (Tygel et al.,
1994). The reason that causes the additional stretch is the
substitution of 4 by � in the derivation of the image wave
equation (4). This means that off the reflector, a slight error
is introduced into the kinematic behavior of the pulse. In
effect, this causes the upper part of the pulse to be moved
to shallower depths than it should be, while at the same
time the lower part of the pulse is moved to greater depths.

Conclusions

The image wave equation for depth remigration is a
second-order partial differential equation that describes the
“propagation” of a migrated reflector image as a function of
a changing migration velocity (Hubral et al., 1996). In this
work, we have studied the consistency and stability of an
FD scheme for this equation. The theoretical stability con-
dition obtained from the von Neumann criterion points to-

wards general difficulties of the process when remigrating
data containing large wavenumbers in the horizontal direc-
tions. Numerical tests have demonstrated that instabilities
indeed arise in such situations. They can, however, be con-
trolled by using an implementation of the FD scheme in the
reverse vertical direction.

With the investigated FD schemes, reflector images can
be remigrated only either to larger or to smaller migration
velocities. The scheme forward in � and forward in � allows
only for an increase, the scheme forward in � and backward
in � only for a decrease of the migration velocity. Other FD
schemes that may be less restrictive are currently under
investigation.

We have seen that image-wave propagation suffers from
intrinsic dispersion as well as grid dispersion due to chosen
FD scheme. Since the grid dispersion depends on velocity
and depths as well as on the spatial frequencies, it cannot
be entirely eliminated. It can, however, be reduced by an
appropriate choice of the grid size.

A drawback of image-wave remigration is its exaggerated
pulse strech. It degrades the vertical resolution of the rem-
igrated image. The effect is inherent to the method as it is
introduced by the very image wave equation that describes
the propagation of the reflector image.
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