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Abstract

For the modeling of a single target reflector in a smooth in-
homogeneous elastic anisotropic media, the volume Born
integral can be transformed into a surface scattering inte-
gral on the reflector. This surface integral, called Born-
Kirchhoff integral, relates very naturally to the Kirchhoff-
Helmholtz integral, thus providing the theoretical link be-
tween the two approaches. Here we specialize the deriva-
tion and main properties of the Born-Kirchhoff integral in
the acoustic case, and use simple synthetic examples to
provide a comparison between the new integral and its
classical counterparts.

Introduction.

The Born (volume) and Kirchhoff-Helmholtz (surface) rep-
resentation integrals are the most widely used descriptions
of reflected and transmitted wavefields due to smooth inter-
faces (see, e.g., Bleistein, 1984; Wapenaar and Berkhout,
1993; Chapman and Coates, 1994; Tygel et al., 1994; and
Schleicher, et al., 2001).

Although representing basically the same phenomena, the
two integrals result from quite independent formulations,
and are traditionally kept as completely separate objects.
Moreover, besides their fundamental distinction as volume
and surface integrals (Wapenaar and Berkhout, 1993), the
representations of Born and Kirchhoff-Helmholtz present
also other differences, namely (a) Born assumes weak
medium perturbations, uses a linearized scattering co-
efficient and the resulting integral is reciprocal and (b)
Kirchhoff-Helmholtz imposes no contrast restrictions for the
medium inhomogeneities, approximates the reflected field
and its normal derivative on the reflector using the plane-
wave reflection coefficient and the incident field, and the re-
sulting integral is nonreciprocal. When evaluated by means
of the stationary phase method, the Kirchhoff-Helmholtz in-
tegral yields the ray-theoretical expressions (Schleicher et
al., 2001).

The Born volume integral can be transformed into a cor-
responding surface scattering integral by application of a
generalized form of the divergence theorem (Ursin and
Tygel, 1997; Novais et al., 1997). This new integral, called
the Born-Kirchhoff integral by Ursin and Tygel (1997) in the
context of elastic, anisotropic media, provides the natural
theoretical link between the Born and Kirchhoff-Helmholtz

representations.

In this work, we provide a quick derivation of the Born-
Kirchhoff integral for the case of acoustic inhomogeneous
media, as well as summarize its main properties. Further-
more, we examine its application to simple synthetic exam-
ples to compare the obtained results with the ones corre-
sponding to its classical counterparts. We also take into
the comparison a modified, reciprocal, Kirchhoff-Helmholtz
integral introduced by Deregowski and Brown (1983).

Formulation of the problem.

We consider a scattering medium consisting of two un-
bounded, inhomogeneous acoustic halfspaces, separated
by a smooth interface

�
. We also consider a reference

medium characterized by smooth compression modulus���
x � and smooth mass density � � x � , where x � ���
	��
	�� �

denotes the location vector in a fixed, global Cartesian co-
ordinate system. The model parameters of the upper half-
space coincide with those of the reference medium. The
lower halfspace has perturbed parameters

���
x ����� ��� x �

and � � x ������� � x � . The total acoustic pressure due to a point
source located at x ��� ��� � 	�� � 	�� ��� in the upper halfspace,
is denoted in the frequency domain by ����� � x 	���� x � � . It
satisfies the acoustic Helmholtz equation "!�#%$&� � x �  �(')� �+*&�,�

x � �-�".�/ �0� ��1 � x . x � � 	 (1)

where / �0� � is the source function and
�

is the angular fre-
quency. Moreover,

&� and
&�

denote the acoustic parameters
for the scattering medium in the upper halfspace&� � x �2�3� � x � 	 &�4� x �5� �4� x � 	 (2)

and in the lower halfspace&� � x �2�3� � x ���6��� � x � 	 &�,� x �2� �4� x �,�6� �4� x ��7 (3)

For observation points in the upper halfspace, the total
pressure field can be decomposed into the superposition� � x 	���� x � �8����9 � x 	:�;� x � �<�3�>= � x 	���� x � � , where ��9 is the
incident wavefield, ��9 � x 	���� x � �?�@/ �0� �;A � � x 	:� � , and �>=
is the scattered or reflected wavefield. Here, A � � x 	�� � is the
Green’s function in the reference medium (which coincides
with the scattering medium in the upper halfspace) for a
point source at x � , observed at x.

Born approximation.

Under the assumption of low contrasts B ���DCE��B�F $ andB � � C � BGF $ , as well as of weak scattering B ��=+BGFHB ��9IB andB  � = B4FJB  � 9 B , the scattered field can be approximated
by the familiar Born representation (see, e.g., Wapenaar
and Berkhout, 1993),� = � x K 	���� x � �2LM��N � x K 	���� x � �5�/ �0� �PO
Q?RPS-T ���� *  A � !U A K . � * � �� * A � A KDV 7 (4)
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Here, the domain of integration W is the region of nonzero
perturbations, namely the lower halfspace, and A K is
Green’s function due to a point source placed at the re-
ceiver location. As easily verified, the resulting approxima-
tion � N is reciprocal.

Kirchhoff-Helmholtz approximation.

The Kirchhoff-Helmholtz approximation of the scattered
field is based on the assumption that at the interface�

, the scattered field and its normal derivative are well-
approximated by the incident field multiplied by the plane-
wave reflection coefficient X �ZY ��� (see, e.g., Wapenaar and
Berkhout, 1993), i.e.,

� = LMX �ZY � �[� 9 	]\ �>=\
^ L"._X �ZY � � \ ��9\
^ 	
(5)

where
Y � is the incidence angle. The Kirchhoff-Helmholtz

surface integral approximation reads (see, e.g., Tygel et al.,
1994)

� = � x K 	`��� x � �2LM��a4b � x K 	���� x � �2�/ �0� � O4c RPd X �ZY � �� TeA K \ A?�\
^ �_A � \ A K\
^ V 7 (6)

Note that X �ZY ��� depends on the reflector geometry and the
resulting approximation � a�b is nonreciprocal.

High-frequency ray approximation.

We now use the high-frequency, zero-order, ray approxima-
tion of the Green’s function A and its gradient

 A ,

Aef � x 	�� �g� h+f � x ��ikjPl�mDn �[o f � x �qp 	 (7) A f � x 	�� �g� n �  o f � x �[A f � x 	:� � 	 (8)

where h f � x �?�rh � x � xf � is the amplitude factor and
o f �o��

x
	
xf � is the traveltime along the ray segment x and xf ,

in which st�vu (source point) or sw��x (receiver). The use
of these expression in the Born and Kirchhoff-Helmholtz
representation integrals (4) and (6) yields

� N � x K 	���� x � �2�. � * / �0� �DO Q RPS X(y �ZY K � CGz{�� #q|2}�~{� * �ZY K � C{zG�� * '�A � A K
(9)

and

� a4b � x K 	:�;� x � �5�n � / �0� ��O c RPd X �ZY � �� � }�~G� Y � � }�~G� Y K� � A � A K 	 (10)

where

X(y �ZY K � CGz{�5� # � �� � ���� }�~{� Y K � ' $|2}�~{� * �ZY K � C{zG� 7 (11)

Here
Y K � � Y � � Y K , where

Y � and
Y K are the incidence

angles of the source and receiver rays at x.
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Figure 1: Model.

Born-Kirchhoff integral.

The above volume Born integral (9) can be transformed,
still within the high-frequency ray approximation, into a
surface integral which is very similar to the ray Kirchhoff-
Helmholtz integral (10). Application of the high-frequency
form of the divergence theorem to the ray Born integral (9)
results in the Kirchhoff-Born integral (see Tygel and Ursin,
1997)� N a � x K 	���� x � �[Ln � / �0� �DO
c(RPd X y �ZY K � CGz{�� � }�~G� Y � � }�~G� Y K� � A � A K 7

(12)

A simple comparison between the Born-Kirchhoff integral
(12) with its classical Kirchhoff-Helmholtz counterpart (10)
shows that they only differ by the reflection coefficient and
incident angle employed. For each point on the reflector

�
,

the Born-Kirchhoff integral utilizes the weak-contrast, lin-
earized, plane-wave reflection coefficient X?y �ZY K � C{zG� com-
puted for half the angle

Y K � between the two ray segments
that join this point to the fixed source–receiver pair. For
the same point on the reflector, the Kirchhoff-Helmholtz in-
tegral uses the full plane-wave reflection coefficient X �ZY � �
and the angle

Y � between the source ray segment and the
surface normal. It is clear that both angles are equal when
the surface point is a specular reflection point. It is to be
noted that Deregowski and Brown (1983), concerned with
the non-reciprocity of the the classical Kirchhoff-Helmholtz
integral, have heuristically proposed the introduction of half
total source-receiver angle

Y K � instead of the incident an-
gle

Y � in the computation of the plane-wave reflection co-
efficient. We call this approximation Reciprocal Kirchhoff-
Helmholtz. Our results show that, at least under the weak-
scattering condition, the Reciprocal Kirchhoff-Helmholtz
approximation can be well justified.

Numerical experiments.

To test the four different integral representations discussed
above, we have modeled synthetic seismic section for a
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Figure 2: (a) Finite-difference section, (b) Born-
Kirchhoff section, (c) Kirchhoff-Helmholtz section.
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Figure 3: (a) Reciprocal Kirchhoff-Helmholtz section,
(b) Born section, (c) Ray section.
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Figure 4: Percentage deviation of the amplitudes
along the first reflection event from the finite-
differences result. Born-Kirchhoff: solid line (—);
Ray: dashed line (- -); Born: dash-dotted line (- � -);
classical Kirchhoff-Helmholtz: small dots ( �{�U� ); Re-
ciprocal Kirchhoff: large dots ( ���@� ).
number of earth models. The results for a common-shot
experiment from one of these models are depicted in Fig-
ures 2 and 3. Figure 1 shows the earth model consisting
of two homogeneous halfspaces with velocities 3.0 km/s
above and 3.5 km/s below a curved interface. The density
in the medium is constant and equal to unity.

Figures 2 and 3 show the synthetic common-offset sections
as obtained from finite-differences (second-order in time
and fourth-order in space) (Figure 2a), the Born-Kirchhoff
(Figure 2b), Kirchhoff-Helmholtz (Figure 2c), Reciprocal
Kirchhoff-Helmholtz (Figure 3a) and Born (Figure 3b) rep-
resentations, as well as from ray modeling (Figure 3c). To
compute the integrals in all cases we used the trapezoidal
rule with a uniform spatial grid � � ��� � ��� � � $q� m
and a time sampling of ���[� $ ms. For the point source we
have chosen a Küpper wavelet with a length of 72 ms.

Several differences between the modeling results can al-
ready be noted in the synthetic sections. For a more quan-
titative analysis, we have picked the peak amplitude along
the first arrival. Figure 4 shows their deviations from the FD
result. Observe that the Born-Kirchhoff integral exhibits the
smallest error over the whole range of offsets.

Conclusions.

We have numerically investigated different integral approx-
imations to the reflected acoustic wavefield. In all our nu-
merical experiments, all above integrals approximate the
reflected wavefield (as calculated by the Finite Difference
method) quite well. However, the quality of the approxi-
mation depends on the investigated model. A method that
would generally provide the best approximation cannot be
determined. In spite of that, the Born-Kirchhoff integral
proved to be the most stable approximation that yielded in
all studied examples a result of good quality, either the best

one or close to the best one. Moreover, the computation
time for this method is (together with that for the Reciprocal
Kirchhoff approximation) the smallest one of all methods
under investigation.
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