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Abstract

Lithology identification may be the most important activity
performed by a geologist. In a borehole environment in
two circumstances this task can be full completed, the first
one is the case where there are cores and the second,
the uncored borehole cross homogeneous rock, like
evaporites — the conventional density log can identify it. In
practices, these situations are rare. Nowadays there are
some tools that can identify minerals in a borehole, but its
use still is not common. We need some methods to
identify lithologies, mostly direct from conventional well
logs. Then, we present an automatic method to identify
lithologies in a borehole from well log data, starting from
an artificial neural network, which emulates the
interpretation of the classical M-N plot with the addition of
one new axis, in the third dimension, represented by
gamma ray log. We show the behavior of this method with
well log data from one borehole in Namorado oil field in
the Campos basin, Brazil.

Introduction

The complex constitution of reservoir rocks and the need
of lithology knowledge from conventional well log data
induced the combination of three porosity tools in
attemption to remove the porosity effect in their
measurements to deduce the rock matrix. The first one
was the so-called M-N cross-plot (Burke, 1969). The
combination of density and sonic measurements is used
to define the parameter M and the parameter N uses the
density and neutron measurements combination. The
graphical presentation of these two parameters produces
the cross-plot — The M-N plot, where are marked the
characteristic values for matrix of principal reservoir rocks.

We show here, a modification of classical M-N cross-plot
adding the gamma ray log as the third axis, called GR-M-
N cross-plot and a method to identify the lithology by a
new approach using competitive neural network
architecture, which emulates the interpreter behavior.

The performance of our approach is shown over actual
data from Namorado field in the Campos basin, Brazil.

Method

We do in the next sections some comments about
competitive neural network and the M-N plot in way to
show a new method to lithology identification.

Neural networks with competitive layer

The neural networks based on a competitive learning are
characterized by competitive neurons that are forced to
compete between them; in such way that only one neuron
stays active or produce a non-null output signal to each
time. A way to induce competition among neurons is the
introduction of inhibitory lateral connections (synapses)
among them. From biological motivation, the lateral
connections are mathematically described by a function
like Mexican hat (Haykin, 2001). In this function we can
distinguish the central area, of excitatory character and
the lateral areas nearby, of inhibitory character.

This  neural network presents two  important
characteristics:

The net tends to concentrate its activity inside clusters, in
the stimulus space, referred as activity bubbles.

The activities bubbles location is determined,
fundamentally by the stimulus nature.

Take Xi,...,.xp as the stimulus applied to neural network,
with p sensorial elements in its input layer. Be wj,...,wjt
the corresponding neuron j synaptic weights in the
competitive layer and ci,Cp,...,Ck, the lateral connections
weights that are Mexican hat function values, in the
discretized form, with k samples. Be vyi,...,yn the
competitive neural network output signals. The neuron |
output signal is expressed by

k
yi(h+1)=¢ E?HB ZCjkyj+k(n)E i=12,..N. (@)

K=k

In equation (1), ¢ is an activation function like the sigmoid
function, responsible for output signal quantization of the
output signal in [0,1]. The Pj term is neuron j weight input
potential; n denotes discrete time. Thus, y; (n+1) is the
output of neuron j at time n+1, and yj««(n) is the output of
neuron j+k at the previous time n. The parameter §in the
argument on the right-hand side of last equation controls
the rate of convergence of the process (Haykin, 2001).

The M-N plot
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The M-N plot (Burke et al, 1969) is a graphical method for
lithologies identification from well log data that works with
three porosity logs defining two parameters, expressed in
metric units:

1. The M parameter is defined by

_ Bty ~Atyma 0.003 . @)
PPrma = pby
2. The N parameter is defined by
N = mw _(mma . (3)
Pbma = Pby

In equations (2) and (3), Atw represents the water transit
time; Atma, the matrix transit time; pbma, the matrix density;
pbw, the water density; ¢gnw, the water neutron porosity
and ¢nma, the matrix neutron porosity.

The parameters M and N are quite independent of rock
porosity, unless the neutron measurements influence.
The use of convenient values for rock matrix (sandstone,
limestone, etc) defines the fixed points or matrix points,
which can be obtained and plotted in a graphical form.
This points act like a fixed patterns to lithologies
identification with the M-N plot.

The GR-M-N cross-plot

We introduce a modification on the classical M-N plot
adding a third axis with the GR measurements, in a way
to focus the principal problem in deduce lithologies from
well log data using the M-N plot, which is to identify the
shales, once its complex constitution do not permit the
existence of unique values for M or N to be represented in
the M-N plot. The principal effect of this 3-D plot is to
enable the separation of the shale effect in the porosity
logs measurements, which permits to identify distinct
lithologies with the same M-N values and different shale
content. We show in Figure 1 the so-called GR-M-N plot
and some input data, represented by red crosses.

To perform the automatic lithology identification using the
GR-M-N plot, we construct a competitive neural network
with the values of M, N and GR as input of each one of
three neurons in its input layer. The competitive layer is
composed by 20 neurons. Here our intention is to provide
a sufficient number of neurons in a way to address all
clusters in the input space. We use the instar learning rule
(Kohonen, 1989) to find the center of all clusters of input
data. Some of competitive neurons could address the
same cluster. Blue circles in Figure 1 show the final
position of weight connections of each competitive neuron
after the end of training phase.

Now, we decide about the competitive neuron that
represents the shales. We start the following rule: The
shale is represented by the competitive neuron with lower
values of M and N and higher value of GR. Taking the
values of weight connections associated to input neurons
that receive the values of N and M, we have the
orthogonal projection of competitive neurons in the M-N
plane, or in other words we have the projection of spatial

clusters of input data in the M-N plane, as is shown in
Figure 2, where the points in the original M-N plot are
represented by black circles and projection of competitive
neurons by blue circles. In fact this method produces a
considerable data reduction for the M-N plot
interpretation. We find the shale point and insert it in the
M-N plot, as can be seen in Figure 2 by the green circle.

We are ready to associate lithology to centers of input
clusters or identify the lithologies crossed by a borehole.
We construct a competitive neural network with two
neurons in the input layer that receive the clusters center
values of M and N. This input layer is full connected with
the competitive layer, which is composed by 10 neurons.
We associate each one neuron to each one of the fixed
points in the M-N plot, including the shale point; taking as
weight connection, exactly theirs coordinates in the M-N
plane (Andrade & Fischetti, 1999).

We induce the competition for each cluster center; the
winner neuron indicates the lithology addressed to all
depth points associated to this particular cluster center.
We take the values of GR log for those depth points and
created a log for each lithology, with those GR values in
the correspondent depth positions and zeros for all other
positions.

Results

We show in the figure 1 the GR-M-N plot and some depth
points of a cored well in the Namorado oil field,
represented by red crosses. Also are represented the
weight connections of the 20 neurons used in the first
competitive neural network, showed by blue circles after
the training phase.

Figure 1. The GR-M-N plot, with the input data (red
crosses) and final stage of competitive neural network to
shale point identification (blue circles).

In the Figure 2 we show the conventional M-N plot with
lithology or fixed points represented by black circles and
clusters center originated in the final stage of competitive
neural network training to shale point identification (blue
circles). We note that borehole crosses three distinct
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lithologies: sandstones, dolomites and shales. A green
circle indicates the shale point.
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Figure 2. M-N plot, with clusters center represented by
blue circles, lithologies points by black circles and shale
point by green circle.

After the computing of the second competitve neural
network we have all the points classified in agreement
with theirs lithologies. We show in Figure 3 a small
interval of our test well showing the lithology identification
performed by our method compared with lithological
description from cores as validation of the method.
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Figure 3. Comparison betwen lithology identification from
cores and from GR-M-N crossplot.

In Figure 4 we show the lithology identification for all
logged interval. In track 1 we show the gamma ray log; in
track 2 the same gamma ray log just in the depth intervals

identified as sandstones. The tracks 3 and 4 are the same
for dolomites and shales.
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Figure 4. Lithology identification of all logged intervals.

Conclusions

We present a method that promotes the lithologic
identification from well log data, even in complex
depositional setting, without the interpret intervation
based on the automation of the conventional M-N plot by
a convenient couple of competitive neural networks. Our
tests have been show a good agreement between our
results and core description.
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