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Abstract   
The Poisson theorem establishes a linear relationship 
between the gravity and magnetic potentials arising from 
common dense and magnetized bodies. This article 
presents analytical solutions derived from the Poisson's 
theorem that allow to determine the magnetization-to-
density-ratio and the magnetization direction of the 
sources. Because the obtained solutions relate 2D gravity 
and magnetic vector fields, a processing scheme is 
proposed in order to obtain the related vector fields from 
the measured field components. Results from tests with 
synthetic data are discussed. 

Introduction 
The Poisson theorem (Garland, 1951; Grant and West, 
1965; Cordell and Taylor, 1971; Chandler et al., 1981) 
establishes a linear relationship between the gravity and 
magnetic potentials and, by extension, the corresponding 
anomalies. For the joint interpretation of potential field 
data, the Poisson theorem has been used to determine 
the MDR - magnetization-to-density ratio (Garland, 1951; 
Kanasewich and Argawal, 1970; Bott and Ingles, 1972; 
Chandler et al., 1981; Hildebrand, 1985; Chandler and 
Malek, 1991) and, less often, the magnetization direction 
of single dense and magnetic structures (Ross and Lavin, 
1966; Cordell and Taylor, 1971). None of the existing 
methods, however, is fully automatic which has precluded 
their use in routine applications. Such a drawback follows 
the adoption of mathematical expressions relating 
particular field components of gravity and magnetic fields 
which necessarily requires a known magnetization 
direction in interpreting real data sets.  
This article presents analytical expressions relating 
vectors of gravity and magnetic fields that enable one 
pass estimates for both magnetization-to-the-density-ratio 
(MDR) and magnetization inclination (MI). No inverse 
problem formulation, as done by Bott and Ingles (1972), is 
required, thus saving computer efforts. Tests with 
synthetic data sets illustrate the utility of the proposed 
technique to the joint interpretation of gravity and 
magnetic data.  
Basic equations 
By assuming 1) the sources generating the gravity and 
magnetic potentials are common; 2) the source 
magnetization direction is constant, and; 3) the MDR is 
constant, the Poisson theorem states (Grant and West, 
1965; Blakely, 1995)  

m
UpV

∂
∂−= ,                                                        (1) 

where, V is the magnetic potential, U is the gravity 
potential, m∂∂  is the directional derivative operator, m is 
a constant unit vector along the magnetization,  and  is 
the Poisson ratio given by 

p

ρ
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In equation (2), G is the gravitational constant; ρ∆  is the 
source density contrast, and  its total magnetization 
(induced plus remanent) contrast. For sources such that, 

 (bold letters denoting vector quantities). The 
MDR is such that 

M∆

mM M∆∆ =
ρ≡ ∆M∆r . For sources satisfying the 

Poisson conditions, the magnetic potential V can be 
obtained by deriving the gravity potential U or, conversely, 
the gravity potential U by integrating the magnetic 
potential V (Baranov, 1957). Corresponding expressions 
for the related vector fields are obtained by applying the 
2D gradient operator, zz e∂∂∂∂≡ xx e +∇ , on both sides 
of equation (1). The anomalous vector magnetic field, 

, arising from sources with direction of magnetization, mT
m, is thus obtained as 
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Similarly, the magnetic field, , caused by the same 
sources but assuming vertical magnetization (i.e.: 

) is  

zT

zM M∆∆ =

zz gp∇−=T ,                                                     (4) 
where  

z
Ugz ∂

∂= ,                                                             (5) 

is the expression for the gravity anomaly; subscript z 
denoting the vertical component of the related gravity 
field, which commonly is measured in gravity exploration. 
However, it can be shown that for 2D homogeneous 
sources 

zm TT =  ,                                                            (6)  

for any magnetization direction m . Since the symbol .  

represents the Euclidean norm, equation (6) shows that 
the magnetic field magnitude (2D sources) is invariant 
with the magnetization direction. The information on the 
magnetization inclination solely resides in the inclination 
of the related vector magnetic field. Such properties of 2D 
magnetic fields is illustrated in Figure 1.  
For sources satisfying the Poisson conditions, equation 
(4) can be substituted in equation (6) to give  

zm gpT ∇= .                                                         (7) 
from which the MDR absolute value, |r| , can be 
estimated: 
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Also can be verified that the angle between the vectors 
 and  depends on the apparent magnetization 

inclination,  (or MI), which then can be determined by     
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Figure 1- Schematic representation of the vector fields in 
equations (4) to (9): Tm (red) is the vector magnetic field 
from a source with magnetization along the unit vector m; 
Tz (blue) is the magnetic field from the same source 
except by considering a vertical magnetization, z. As 
equation (8) states, the magnitudes of the fields Tm and 
Tz, are identical, whatever direction m and position along 
a profile. From equations (4) and (9), the angle  of the 
magnetization is equal to the angle between Tm and Tz, at 
any station of a profile. For a inducing field (green) along 
unit vector t, the usually measured total field anomaly is 
the component .  t

mT

Utility of solutions (8) and (9)  
Equations (8) and (9) are the basis of the proposed 
technique since they determine the parameters |r| and  
at each station of a profile. Since the MDR and MI are 
determined, the proposed method will hereafter be 
referred as MDR-MI method. The model in Figure 2 helps 
us to assess the utility of the MDR-MI method in 
characterizing a multiple source region whose related 
anomalies, due to the effect of superposition, appear to 
be very complex (2c). Despite the anomaly complexity, 
true MDR and MI values are determined from equations 
(8) and (9) (Figure 2a). As illustrated in Figure 2b, the 
intensities 

α

mT  and zg∇  are perfectly correlated when 
the Poisson conditions are satisfied. This characteristic 
can be used to identify a region satisfying such 
conditions. 
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Figure 2 - MDR-MI profiles over a multisource prism 
model obeying the Poisson’s conditions; a) MDR (blue) 
and MI (red) values; b) magnitudes of the vector magnetic 
field (blue) and gradient of the gravity anomaly (red); c) 
magnetic (blue) and gravity (red) anomalies; d) cross-
section of the 2D prisms and physical property values. 

Data processing scheme  
To be evaluated from equations (10) and (11), the MDR 
and MI parameters require the knowledge of the vector 
fields  and , which, in turn, require the gravity 
anomaly derivatives 

zg∇ mT
xgz ∂∂  and xgz ∂∂

m.Tt≡

)cos(α

 and magnetic 

field components T  and . Unfortunately, routine 
gravity and magnetic surveys only measure single field 
components: the gravity vertical component, , and the 

magnetic total field component, , or its gradient. 
Here, the unit vector  denotes the direction of the 
geomagnetic field. Since homogeneous 2D sources are 
considered, the magnetic field  has components only 
along the x and z axes. The projected vector, , 
obtained by projecting vector t  onto the x-z plane, is 
given by  where l , 
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 is the apparent inclination;  is 
the geomagnetic field inclination, and D is such that 

. The angel  is the geomagnetic 
declination, and S the source strike, positive clockwise 
measured with respect to the North. Due to the intrinsic 
properties of the potential fields, the required components 

gI

S−D≡Dg
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xgz ∂∂ , xgz ∂∂ ,  and  can be determined at any 
point away from the causative sources simply by applying 
a suitable set of linear transformations upon the 
measured anomalies. In the wavenumber domain, the 
linear transformations can be carried out according the 
flowchart presented in Figure 3.  
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Figure 3- Data processing flowchart to determine the 
MDR and MI parameters. Definition of mathematical 
terms: h, continuation height (negative upward); F direct 
Fourier transform; k Fourier domain wavenumber. Dotted 
line boxes assign instructions and solid line ones the 
results from such instructions. Further information about 
the upward continuation and component change filters 
can be found in Gunn (1975) and Blakely (1995). 
 
As indicated in Figure 3, the processing routine 
incorporates a step in which both gravity and magnetic 

data are upward continued. This operation was included 
in order to prevent excessive noise amplification in 
computing the gravity gradient. 

Synthetic tests 
To gain insight to the expected MDR-MI performance in 
more complex environments, three cases of synthetic 
MDR-MI responses are presented (Figure 4). These 
responses were evaluated from a geophysical models 
consisting of two sets of sources, each side using several 
2D prisms (Figure 4e).  
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Figure 4 - MDR-MI profiles above multisource media 
representing different types of transition zones (cases 1 to 
3); a) MI - Magnetization Inclination; b) MDR - 
Magnetization-to-density-ratio;  c) vector field magnitudes 
|Tm| (colored according each case) and | gz| (black); d) 
gravity (black) and magnetic (colored) anomalies; e) 
prismatic bodies and properties. 
 
As Figure 4 shows, at stations far from the transition zone 
the MDR and MI parameters are correctly determined in 
all of the tested cases. The rather flat trends over the 
homogeneous blocks allow the identification of the 
regions satisfying the Poisson conditions. Spurious MDR-
MI values only occur close to the transition of source 
types because in this region the gravity and magnetic 
fields are mostly affected by the two set of differing 
sources. Close to the transition, MDR-MI estimates are 
only apparent and, as such, may present no direct 
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correspondence with the true properties of the underlying 
sources. Apparent MDR-MI estimates can reach values 
outside the range of the two sets. Nevertheless, the 
oscillation of the apparent values near the transition zone 
denotes its presence which in some cases is not very 
evident in the gravity and magnetic profiles (Figure 4d). It 
suggests a further application for the proposed method. 
Besides a physical property profiler, the MDR-MI method 
mighty, in some cases, detect the variation between (or 
within) geological units with MDR or MI contrast. Another 
feature observed in Figures 4c and 4d is the rather 
uncoupled variations exhibited by the MI and MDR 
profiles. In case 1, for example, the MDR apparent values 
adequately  identify the existing variation while the MI 
values only oscillate around the true inclination value. The 
MI estimates are not severely distorted by the MDR 
variation thus establishing the uncoupled characteristic 
previously described. Uncoupled response is also noted 
in case 2. In case 3, it allows us to map the joint variation 
of MDR and MI properties as when isolated variations 
were considered (cases 1 and 2). In favorable conditions, 
this MDR-MI uncoupled response could be used to 
identify which Poisson condition is (are) violated. Tests 
not presented here suggest the ability to identify 
gradational variations in the MDR and MI rock properties, 
a feature practically invisible in the corresponding 
anomalies. 

Conclusions 
The MDR-MI method can easily be implemented to 
existing software packages and its results promptly can 
be interpreted. Regions where the Poisson conditions are 
satisfied are automatically identified from a well defined 
flat pattern in both MDR and MI profiles (mainly in the 
former one). Their boundaries can also be inferred since 
notable variation occurs close the contacts.  
Further synthetic tests and results from the real data 
applications are presented by (Mendonça, 2003). In real 
data applications, two main limitations were observed. 
First, the proposed method requires very elongated 
anomalies thus requiring a proper profile positioning 
within the gravity and magnetic anomaly maps. Secondly, 
the profile must encompass sources with a same density 
contrast sign (note the Poisson's conditions are violated if 
density contrast changes), which implies either negative 
or positive gravity anomalies but not both them 
simultaneously.  
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