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Abstract   

Measurement of formation densities is well established by 
logs, but a difficulty remains for computation of 
environmental effects that seriously affect log 
interpretations. In this paper, I develop a theoretical 
model based on the finite element method (FEM) to 
simulate the gamma - gamma spectral density log for 
radially symmetric media. My approach is based on the 
known Galerkin technique. The computed parameter is 
the scalar flux from the multigroup diffusion approximation 
of Boltzmann transport equation (BTE). The method is 
used to theoretically determine densities of complex 
lithological sequences. Examples of synthetic logs show 
the usefulness of this kind of numerical modeling for 
studying important effects in the density logs such as 
borehole size, mud weight and invasion. Results indicate 
FEM as an accurate and computationally efficient method 
to predict all these significant environmental effects 
affecting the density tool responses. 

Intrduction 
 

Subsurface density formation is one important 
petrophysical parameter for up-to-date interpretation of 
geophysical data and formation evaluation. In surface 
seismic prospecting, density is a basic parameter to 
compute layer's acoustic impedance. The spectral 
borehole gamma - gamma density tool may be used for 
density evaluation. It is constituted by a collimated 
gamma ray source (usually Cs137) that impinges radiation 
in borehole-surrounded formation and detects radiation 
scattered back into two detectors in the tool itself, located 
at 15 and 32 cm from the point source. At sufficiently high 
energies (150 to 500 keV) Compton scattering 
predominates (Bertozzi et al., 1981). The average 
electron density in a small volume of rock controls the 
counting rate of the scattered radiation. This average 
electron density strongly correlates with formation bulk 
density (Meyers, 1992). 
 

The goal of this paper is to simulate, by the finite-element 
method (FEM), the transport of gamma radiation emitted 
by the Cs137 point source and its interaction with formation 
material. The accuracy of the FEM is tested comparing its 
results with the analytical solution obtained from a simple 
model (Tittle e Allen, 1966). An additional test is 
performed to achieve the best convergent result 

concerning the ideal number of energy groups. To 
accurately apply these ideas, requires the use of proper 
geological and mathematical models of the system under 
study. The mathematical model is that suggested by the 
Boltzmann transport equation, which, in a cylindrical 
coordinate system for a radially symmetric media, 
assumes the following form 
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with known boundary conditions. The index g denotes the 
group and diffusion coefficient, Dg, total reaction cross-
section, ΣT, and transition matrix elements, bgg', are 
functions only of the spatial coordinates. 
 

Mathematical aspects of the FEM algorithm 

General considerations of the finite element solution of 
the system of equations (1) consist basically in 
subdividing the region surrounding the well in a set of 
triangular elements which constitute the FEM mesh 
(Davies, 1980) Next, the required scalar gamma ray flux 
is approximated within each of these elements by a linear 
interpolation function  
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(e) is a base function defined by 
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As expansion defined by equation (2) must be finite, an 
approximation error ε results, given by 
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where K(e) is the local stiffness matrix associated with 
element (e) of the FEM mesh and f(e) is the source vector 
quantity. The goal of the FEM is to minimize this error. To 
perform this task it is necessary to take the inner product 
of the error and a test function Nn

(e) be zero over the 
region where the local base function is defined,  

General considerations of the finite element solution of  
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Mathematically, this means that the error is orthogonal to 
the test function into the sub domain (e). Amongst several 
strategies to built approximated solutions of the boundary 
values problems I have chosen the Galerkin method 
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where the base and test functions are equal, Nn

(e) = Ln
(e).  

So, the norm ||ε|| is minimized by this method.  

The stiffness matrix 

By applying the Galerkin method on the first and second 
terms of the left-hand side of equation (1) one has defined 
the first term of the stiffness matrix  
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where Ae is the area of the element (e). If the parameter 
Dg

(e) (ρ, z) is the diffusion coefficient for element (e), 
equation (6) results in 
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where the medium radius is ρ  = (ρ1 + ρ2 + ρ3)/3. The 
third term on the left-hand side of equation (1) define the 
second term of the local stiffness matrix 
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By also expanding the radius ρ in the base functions Li
(e) 

and defining 
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one finds all elements of equation (8):   
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So, the stiffness matrix of the FEM local system has been 
determined as    
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The source vector 

Identical to the stiffness matrix, the source vector is also 
constituted by two terms. The first one is provided by all 
photons coming from the higher energy groups g' that 
have acquired energy sufficient to be included in the 
group g, i.e., 
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Expanding both transition source F(e)(ρ, z) and  ρ in base 
function Li

(e), the first source term is given by   
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By solving equation (15), one has 
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where α=πρ1S1Ae, β=πρ2S2Ae, γ=πρ3S3Ae, χ=π(ρ1S2 + 
ρ2S1)Ae, λ=π(ρ1S3 + ρ3S1)Ae and  η=π(ρ2 S3 +ρ3 S2 )Ae.  
The second term of the source vector refers to the Cs137 
point source. When the Galerkin technique is applied to it, 
one obtains the following expression 
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Based on the properties of the Delta Dirac function, only 
that node in the global source vector contains the point 
source S (ρ=0, z=z0), i.e.,  
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Last, the local stiffness matrix and source vector 
quantities are assembled into their global configuration,  
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which results in the following global system of the finite 
element method  

.fKΦ=                                                                         (21) 

Any class of efficient numerical algorithm, accounting for 
the relevant sparseness and bandwidth structure of the 
matrix K, can now be used to solve equation (21) for 
scalar flux. 

Analysis of convergence  

The results obtained by the FEM have been checked 
quite extensively against analytical solution for the scalar 
flux in limiting cases (Tittle e Allen, 1966). I have 
suggested a new approach to get a convergent solution 
for gamma radiation, which consists in increasing the 
number of terms of the series solution until one has 
obtained the required convergent solution. The 
summation starts with 11 points. Figures 1(A) and 1(B) 
indicate that number is insufficient to establish the 
required convergence for both vertical and radial axis.  

However, the problem was solved by increasing step by 
step the number of series terms, namely 101, 201 and 
301. Solutions for terms between 201 and 301 have 
suggested this last as a rather ideal number of terms to 
check our FEM solution, as verified by Figures 1(C) and 
1(D). To additionally verify the convergence of the 
numerical solution, when the number of energy groups in 
the multigroup diffusion approximation is increased, a 
specified limit of energies groups, say 100, is given. This 
number was considered sufficient to get a convergent 
solution. I have found that for z = 15cm and 32cm, which 
correspond to the near and far detector locations, it is 
necessary at least 50 energy groups to reach 
convergence.  
Mud weight effects 

Figure 2(A) shows the FEM synthetic log from a 
horizontally geological layered model constituted by five 
planar layers with thicknesses of 40cm each. The layers 
L1, L3 and L5 correspond to a 40% porosity sandstone 
with 60% of quartz and 40% water-saturated. Layers L2 
and L4 have 10% porosity, and are a mixture of evaporite 
and carbonate. Volumetric mineral fractions are 20% of 
calcite, 20% of dolomite, 50% of anhydrite and a 10% 
water saturated porosity. Two kinds of borehole fluids are 
simulated, fresh water and a mixture of 10% of barite and 
90% of water. For water-based mud one observes that all 
layer interfaces are accurately recognized. The values of 
simulated and true densities show excellent agreement 
and have demonstrated the attainable accuracy and 
precision of the FEM modeling. The agreement occurs 
mainly because this model has the same mud and well 
bore composition as that of the hypothetical calibration 

model used to compute the constants. On the other hand 
the log simulated with barite-based mud shows higher 
density values, reflecting the higher barite density. In such 
case, one can not identify with sufficient accuracy most of 
the layers´ interfaces. The density values on the center of 
layers L2 and L4 are about 18.7% higher than the true 
densities. For L1, L3 and L5 these values are only 6.22% 
higher. So, I have concluded that mud density strongly 
influence the interface locations with gamma-gamma 
density logs. 
Thin layers response 

In order to simulate thin layers effects on the density tool 
response I have employed again a geological horizontally 
layered model composed by twelve planar layers. Figure 
2(B) illustrates the synthetic log concerning such model. 
Layer L1 is an  evaporite with thickness of 40cm and 
constituted by 90% of anhydrite and 10% water-saturated 
porosity. Layer L2 is a mixture of evaporites and 
carbonate with 20% of calcite, 20% of dolomite, 50% of 
anhydrite and 10 % water-saturated  porosity. At depths 
ranging from 70cm to 190 cm occurs a sequence of eight 
thin layers labeled L3 to L10 each of which are 15cm 
thick. Layers L3, L5, L7 and L11 are sandstones with 
volumetric mineral fraction given by 60% of quartz and 
40% of water porosity. Layers L4, L6, L8, L10 and L12 
are a 40% porosity mixture of evaporite and carbonate. 
The log in this region exhibits an oscillatory pattern 
characteristic of a cyclical material deposition in a low-
energy environment. Due to the low density contrast 
between L1 and L2, associated with a high contrast 
between L2 and L3, the layer L2 is not distinguishable on 
the log. This observation suggests the existence of a 
unique thicker layer extending from the top of the model 
until a depth of 70cm.  

 Invasion effects 

To model the influence of invasion effects on density logs 
a geological horizontally layered model was used, 
composed by three planar layers with thickness of 50cm. 
The layers L1 and L3 are a 35% porous formation with 
10% of quartz, 20% of calcite, 20% of dolomite, 15% of 
feldspar and 35% of oil-saturated porosity. The central 
layer L2 is a 20% porosity sandstone with 80% of quartz 
and 20% of water-saturated porosity. This layer is 
supposed permeable enough to allow an invasion radius 
up to 10cm. The resulting synthetic logs are illustrated in 
Figure 2(C). Invasion effects at the mid-point of this layer 
result in a density 1.8 % lower than its correspondent 
water log. This unusual exchange in density values 
occurs because the lithology does not correspond to that 
of the calibration model. Additionally I have imposed a 
displacement of oil by the water mud in the invasion zone 
which means an increasing in density near the borehole 
wall. It was also verified a surprising better fitting for no 
invasion log. Finally, I have observed that the invasion 
effects do not influence the interfaces´ position 
determination. 

Washout effects 

To illustrate the washout effects on density logs I have 
proposed a geological model constituted by three 
horizontal layers with thickness of 100cm (Figure 2(D)). 
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The layers L1 and L3 are a sandstone composed by 60% 
of quartz and 40% of water-saturated porosity. The 
central layer L2 is shale with 10% of quartz, 20% of illite, 
20% of montmorillonite and 20% of water-saturated 
porosity. Also, in the central layer were imposed three 
wall overbreaks ranging from depths of 120-135cm, 150-
165cm and 180 - 200cm. Each of them results in a well 
diameter enlargement of 20%. The normal synthetic log 
shown in Figure 2(D) is quite accurate provided its 
similarity with the calibration model. The washout log 
exhibits similar aspects in the curves acquired from a 
sequence of thin bed showing significant density contrast. 
At depth of 200cm there is evidence of a displacement of 
the original interface location due to a drift in the log 
caused by a 20cm thick overbreak that falls exactly on 
this interface.   
Conclusions 

The finite-element method (FEM) was applied to simulate 
the gamma-gamma spectral density log in geological 
horizontally layered models. I have shown that FEM is 
accurate and computationally efficient in predicting 
density tool responses.  The washout effect is the main 
cause of oscillations in the gamma-gamma density log 
within a homogeneous layer. Most of thin layers 
sequence results in a pattern often recognized in cyclic 
sedimentation processes. I have observed that different 
mud densities affect the interface locations while invasion 

effects have only scant influences in these locations. 
Borehole overbreak may cause drift in interface positions, 
what can make some of them indistinct in the density 
logs. 
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Figure 1: (A) Analysis of Convergence in the z-coordinate; (B) Analysis of Convergence in the ρ -coordinate; (C) Results by 
comparing analytical and numerical solutions in the z-coordinate and (D) Results by comparing analytical and numerical 
solutions in the ρ -coordinate. 
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Figure 2: (A) Example of mud weight effects on density log; (B) Example of thin layers response on density log; (C) Example 
of invasion effects on density log and (D) Example of washout effects on density log. 
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