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Abstract 

Fractures in a porous rock can be modelled as very thin 
and highly porous layers in a porous background. Elastic 
moduli of such a fractured medium can be obtained using 
the result of Norris (1993) for wave propagation in 
periodically layered poroelastic media. When this porous 
fractured system is dry, it is equivalent to a transversely 
isotropic dry elastic porous material with linear-slip 
interfaces. When saturated with a liquid this system 
exhibits significant attenuation and velocity dispersion due 
to wave-induced fluid flow between pores and fractures. 
The characteristic frequency of such attenuation and 
dispersion depends on the background permeability, fluid 
viscosity, as well as fracture density and spacing. The 
theoretical results are in good agreement with numerical 
simulations using the reflectivity algorithm generalized to 
poroelasticity. 

For randomly distributed microfractures the frequency 
dependent anisotropy can be modelled using a 
combination of low frequency predictions based on 
anisotropic Gassmann equations and a frequency 
correction based on the dispersion relationship of Hudson 
et al. (1996). Comparison with laboratory experiments 
confirms that this combined model gives an accurate 
prediction of saturated elastic properties and angular 
dependencies of elastic wave velocities versus frequency.  

Introduction 

Naturally fractured reservoirs have attracted an increased 
interest of exploration and production geophysics in 
recent years. In many instances, natural fractures control 
the permeability of the reservoir, while porosity controls 
the overall capacity. The effect of fractures on elastic 
properties of fluid-saturated porous reservoirs differs from 
their effect in non-porous elastic media due to fluid flow 
between pores and fractures. Due to this wave-induced 
fluid flow, the properties of porous rocks with aligned 
fractures exhibit frequency dependent anisotropy. 

We propose two alternative models for the frequency 
dependent properties of fractured porous rocks. In the 
first model, we model fractures as highly porous thin 
layers in a porous background. If we assume that the 
porous medium is permeated by a periodic sequence of 
such fractures (layers), we can derive the elastic 
properties of the system using the results of Norris (1993) 
and White et al. (1975), who give expressions for the 

frequency dependent effective moduli of a periodically 
layered poroelastic medium. To validate our theoretical 
model of attenuation and dispersion, we perform 
numerical experiments using a poroelastic extension of 
OASES reflectivity software. 

In the second model fractures are modelled as voids of 
specific (disk-like) geometry. Here we combine the low-
frequency results of the first model with a model of 
Hudson et al. (1996) for velocity dispersion. 

Fractures as thin porous layers 

We model a porous medium with aligned fractures as a 
periodically stratified system of alternating thick layers of 
a finite-porosity material of type b representing 
background, and thin layers of a high-porosity material of 
type c representing cracks or fractures. Background 
properties are: the porosity bφ , permeability bκ ,  dry 
(drained) bulk modulus bK ,  shear modulus bµ , and 
thickness bh .  Fracture (crack) properties are the porosity 

cφ , permeability cκ ,  dry bulk modulus cK ,  shear 
modulus cµ , and thickness c bh h . The spatial period of 
the system is b ch h h= + , and the linear fractions of the 
materials b and c are b bl h h=  and c cl h h= . Both 
background and fractures are assumed to be made of the 
same isotropic grain material with bulk modulus gK , 
shear modulus gµ  and density gρ , and saturated with 
the same fluid with bulk modulus fK , density fρ , and 
dynamic viscosity η . The aim of this paper is to compute 
frequency dependent elastic wave velocities in such 
system of layers in the limits 0cl → , and 1cφ → . 

Elastic waves in such a periodically layered and porous 
medium can be described by Biot’s (1962) equations of 
poroelasticity with spatially periodic and piecewise 
constant coefficients. Norris’s (1993) result can be used 
to relate the overall elastic properties of the layered 
system to the properties of materials b and c. The 
properties of the fractured medium can then be 
established by taking the small thickness limit 0cl → . In 
this limit, the contribution of the fractures can only be 
significant if at the same time 0cK → ,  and hence 1cφ → . 

To relate different parameters of material c (fractures) to 
the commonly used fracture properties (such as fracture 
density), we first consider the dry fractured medium. 

Dry fractured porous medium 

When both materials b and c are dry ( 0fK = ), they 
behave as isotropic elastic layers. In the long wavelength 
limit the system of horizontal layers perpendicular to 
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the 3x  axis is equivalent to a transversely isotropic elastic 
solid with a stiffness matrix dryc . Elements of this 
symmetric matrix are: 

11

33 11 22 12 44 55
1 12dry dry dry dry dry dryc c c c c c
L

µ
µ

−−

= , = = + , = = ,  

2

13
13 23 33 12 66

33
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c c c c c

L c L
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 
 
 = = , = + , = ,   (1) 

where 2 3Kλ µ= − / ,  2L λ µ= + ,  and angle brackets 
indicate weighted average b b c cN l N l N= +  of the 
enclosed property N . By inverting the stiffness matrix 
dryc  and taking the limit 0cl → , we can write the 

compliance matrix drys  of the dry fractured porous 
medium in the form: 

dry dry dry
b c= + ,s s s                                 (2) 

where dry
bs  is compliance matrix for the (isotropic) material 

b (background), and dry
cs  is excess compliance matrix 

given by the linear slip interface theory (Schoenberg and 
Douma, 1998): 

330
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= = ,      44 550
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c
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lZ s s
µ→
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where NZ  and TZ  are called excess normal and 
tangential fracture compliances, respectively. Equations 
(3) mean that the fractures in the dry porous background 
are modeled as very thin and very soft porous layers, and 
imply that in the limit 0cl →  the porosity 1cφ → .  Using 
equations (3), we can relate the solutions of Biot’s 
equations of poroelasticity for the fluid-saturated medium 
to the excess fracture compliances. 

Fluid effect 

Whereas the dry rock is elastic, the fluid saturated rock is 
bound to exhibit frequency dependent attenuation and 
velocity dispersion due to the wave induced fluid flow 
between pores and fractures. Norris (1993) showed that 
in the low-frequency regime of Biot’s theory the 
compressional wave modulus 33

satc  of a periodically 
layered fluid-saturated porous medium can be written in 
the form: 

1
2
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In these equations ω is frequency, jC  is the fluid-
saturated P-wave modulus of the material j  given by 
Gassmann’s equations:  

2 1 j
j j j j j

g f

C L M M
K K

α φ φα − −
= + , = + ,              (6) 

and 1j j gK Kα = − /  denotes Biot’s effective stress 
coefficient. Effective P-wave modulus of the fractured 
medium can be obtained by taking the limit 0cl →  in 
equation (4). In this limit, and taking into account 
equations (3), we observe that: 

1 1c
c b c f c c c cM K D L d Rκκ κ

η
, → , → , | | , → , 

so that the modulus 33
satc  can be written in the form: 

( )2
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where the parameter bJ  corresponds to the fluid diffusion 

length in the background material ( )b b b b bJ M L Cκ η ω= . 
Further evaluation of the result expressed by equation (7) 
requires information about the saturating fluid. If the 
fractured porous continuum is dry, then c cC L→ ,  and we 
have: 

33

1 1 1
N Nsat

b

Z Z
c C L∞

= + = +                        (8) 

in accordance with equation (3). On the other hand, if the 
fluid is liquid, so that in the limit 0cl →  its bulk modulus 

fK  is larger than that of the fracture material c, then 

c fC K→ ,  bC C∞ → ,  and we have: 

( )2
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Here and below we will assume that fK  is finite. Equation 
(9) gives the P-wave modulus for waves propagating 
normal to fractures as a function of frequency, 
background properties and normal fracture compliance 
NZ . The corresponding P-wave velocity along the 

symmetry axis 3x  is given by: 

33
3

sat

p
b

CV
ρ

= ,                                   (10) 

where (1 )b g b f bρ ρ φ ρ φ= − +  is mass density of the fluid-
saturated background material. This velocity is complex 
and frequency dependent, indicating the presence of 
attenuation and dispersion.  
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Seismic frequencies 

Of particular interest for seismic exploration are low-
frequency elastic properties of porous fractured rocks. 
Elastic stiffness 33

satc  in the low frequency limit can be 
obtained from equation (9) by setting bJ  to infinity. 
Similar results can be obtained for other elements of the 
stiffness matrix (Brajanovski and Gurevich, 2003). These 
results are consistent with the anisotropic Gassmann 
equations (Gassmann, 1951; Brown and Korringa, 1975; 
Gurevich, 2002). The most important conclusion from 
these results is strong influence of background porosity 
on the anisotropy of the fractured porous medium.  

 
Figure 1. P-wave anisotropy parameter ε  versus fluid 
bulk modulus for different values of the background 
porosity. For each porosity the fracture compliances have 
been adjusted to provide the same value of 0 1ε = .  for the 
dry rock.  
 

 

Figure 2. P-wave anisotropy parameter ε versus 
background porosity as predicted by the present theory 
(blue line), and Thomsen’s (1995) theory (green line). 
Red line shows ε  for the dry rock. For each porosity the 
fracture compliances have been adjusted to provide the 
same value 0 1ε = .  for the dry rock. 

 

Figure 1 shows P-wave anisotropy parameter ε  of the 
porous fractured medium saturated with a fluid of bulk 
modulus fK  for different background porosities. For each 
porosity a different value of normal fracture compliance 
was used to produce the same value for 0 0 1ε = .  for the 
dry medium and fracture porosity of 0.01 % (this 
corresponds to crack density of penny-shaped cracks 
equal to 0.0375). At very low background porosities, satε  
tends to zero as fK  increases. However, even for 

modest values of background porosity satε  shows a much 
more gradual decrease with increasing fluid modulus. 
Interestingly, the decrease of satε  with fK  is minimal at 
around 10 % porosity, and then increases again.  

Figure 2 examines this effect further. It presents ε as a 
function of background porosity bφ  for water-saturated 
rock ( 92 25 10fK = . ×  Pa). Blue line shows the solution 
based on anisotropic Gassmann equations (Gurevich 
2002), and green line the solution of Thomsen (1995). We 
see that ε  is zero for zero background porosity, and 
within a range of a few per cent porosity sharply 
increases to almost 0ε , the value of ε  for the dry 
medium. Then the dependency of ε on bφ  levels off and 
before gradually decreasing to about half of 0ε  at 
background porosity about 40%.  

As discussed by Thomsen (1995) and Hudson et al. 
(2001), the sharp increase of ε results from the fact that 
when surrounded by (equant) pores, the fluid in the 
fracture has plenty of space around it to escape to when 
compressed, and therefore the fracture is almost as 
compliant as in the dry medium. In other words, stiffening 
of compliant pores by the fluid does not occur, as fluid 
can escape into the pores. This effect is most pronounced 
between zero and 5-10% porosity.  

The gradual decrease of ε at higher background 
porosities is simply the result of fluid saturation: the more 
porous the rock, the greater the role of the saturating fluid 
in the overall properties of the rock. Since the pore fluid is 
isotropic, it tends to reduce the overall degree of 
anisotropy of the rock.  

Velocity dispersion and attenuation 

For the P-wave modulus along the symmetry axis 
frequency dependence is given by equation (9), which 
can also be written in the form 
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33

11 1

1 cot

b b

b

b

b

M
N C

sat C
b b N N M

c C L i i

α

ω ω
  ′ ′  

    

∆ −
= + .

− ∆ + ∆
       (11) 

Here we have introduced a dimensionless fracture 
weakness N∆  and the normalized frequency ω′ : 

1
b N

N
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+
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2

4
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η ωω
κ
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Equation (11) can be used to evaluate the frequency 
dependence of the P-wave velocity and attenuation for 
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waves propagating perpendicular to fractures from the 
equations: 

( ) 11
3Rep pV V

− −
  
 

= ,   1 1
32 Imp pQ V V− − 

 
 

= ,             (13) 

where 3pV  is complex velocity given by equation (10). 
Figures 3(a, b) show velocity normalised by the high-
frequency velocity ( )1 2

33pV c ρ
/∞ ∞= /  and dimensionless 

attenuation 1Q−  as functions of normalised frequency, for 
a water-saturated quartz sandstone ( 37gK =  GPa, 

44gµ =  GPa, 2 65gρ = .  g cm-3). with dry fracture 
weakness 0 2N∆ = .  and different background porosity 
levels. The dependency of the background dry bulk and 
shear moduli on porosity was assumed to follow the 
empirical model of Krief et al. (1990) 

( )( )3 11b g b gK K φµ µ φ / −/ = / = − .  Velocity dispersion and 
attenuation have a shape typical for a relaxation 
phenomenon.  

 
Figure 3: (a) P-wave velocity dispersion for fixed fracture 
weakness and varying background porosity  
(b) attenuation for the same medium 

For the constant N∆ , both attenuation and dispersion 
increase sharply with increasing porosity from zero up to 
a few per cent porosity, and have almost identical shapes 
for porosities higher than 10%. The calculations were 
made We also note that the dispersion and attenuation 
are significant over a frequency range that spans at least 
two orders of magnitude.  The results for various levels of 
∆N are shown in more detail in Figures 4 (a, b) for typical 
reservoir background porosity of 20%. As expected, the 
dispersion and attenuation are proportional to the fracture 
weakness ∆N The peak normalised frequency for 
attenuation decreases with increasing fracture weakness. 

Numerical simulations 

To validate our asymptotic theoretical model of 
attenuation and dispersion, we perform numerical 
experiments using a poroelastic extension (Stern et al., 
1985) of OASES reflectivity software (Schmidt and 
Tango, 1986), which can compute the plane-wave 
transmission coefficient for a stack of porous layers with 
given thicknesses. 

 

 
Figure 4: (a) P-wave velocity dispersion for fixed porosity 
and varying fracture weakness (b) attenuation for the 
same medium.  

Background 
porosity 

Background 
porosity 

Fracture 
weakness 

Fracture 
weakness 
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We simulate a seismic wave propagating normally to the 
periodic stack of 48 alternating porous fluid-saturated 
layers, of which 24 thick layers represent background 
(with porosity 20%) and 24 thin highly porous equidistant 
layers represent fractures with normal fractures weakness 
0.1. Figure 5 compares effective attenuation 1/Q 
calculated from the transmission coefficient computed by 
OASES with our theoretical prediction based on equation 
(11). We observe good agreement between our effective 
medium theory for fractured rock and the numerical 
experiment. Moreover, similar results were obtained for 
randomly as well as periodically distributed fractures. This 
means that the results obtained for periodic systems of 
fractures apply to much more general fracture systems. 

Fractures as penny-shaped cracks 

Hudson et al. (1996) developed a theory for frequency 
dependent elastic properties of porous rocks with penny-
shaped cracks. This theory is based on analysis of the 
fluid pressure relaxation between a single crack and the 
unbounded porous continuum (background). As a result 
of this analysis, Hudson et al. (1996) obtained anisotropy 
parameters of the fractured medium as functions of 
frequency. In the low frequency limit, the model predicts 
equal anisotropy in the dry and saturated media, a result 
which is inconsistent with the anisotropic Gassmann 
equations (Hudson et al., 2001).  

Figure 5: Attenuation computed using reflectivity method 
(blue line) and predicted by the effective medium theory 
(green line). 

 
Figure 6. Experimental setup for ultrasonic measurements 
of Rathore et al. (1995)  

 
Figure 7. P, SH, and SV velocities versus angle for dry 
sample. Symbols: measured data, lines: linear slip fit. 

Figure 8. P, SH, and SV velocities versus angle for water-
saturated sample. Symbols: measured data, lines: 
anisotropic Gassmann prediction. 

Figure 9. P, SH, and SV velocities versus angle for water-
saturated sample. Symbols: measured data, lines: 
anisotropic Gassmann prediction with frequency 
correction 
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This discrepancy arises from the single crack analysis 
which is only applicable when wavelength is small 
compared to the distance between cracks (Hudson et al., 
2001). However, the relative velocity dispersion 
(frequency dependency) predicted by Hudson et al. 
(1996) is realistic. In order to model the frequency 
dependent anisotropy in a manner consistent with the 
anisotropic Gassmann equations, we combine the 
dispersion relationship of Hudson et al. (1996) with the 
low-frequency results of the present study.  

We test this combined model on the experimental data of 
Rathore et al. (1995). The experiment measured 
compressional and shear wave velocities as functions of 
angle on a dry and saturated synthetic porous rock 
sample with aligned but randomly distributed disc shaped 
cracks (Figure 6). The ultrasonic data were recorded 
using a central frequency of 100 kHz. The physical 
properties of the uncracked background and fractures 
were measured in the experiment, and dry fracture 
weaknesses were obtained from the best fit of dry 
velocities as functions of angle (Figure 7). The elastic 
properties of the saturated sample were then predicted 
using the derivations of the present study. Figure 8 shows 
the prediction of saturated compressional and shear wave 
velocities based low-frequency anisotropic Gassmann 
equations (Gurevich, 2002). There is a reasonably good fit 
for the orthogonally polarised shear waves, but anisotropy 
of the compressional wave is overestimated. Figure 9 
again shows velocities obtained from saturated elastic 
properties, but after the frequency correction based on 
the results of Hudson et al. (1996). Excellent agreement 
is observed. Note that unlike the study of Hudson et al. 
(2001), who used permeability values that provided best 
fit with measured velocities, our prediction is based on the 
measured matrix permeability of 11.4 Darcy. 

Conclusions 

Fractures in porous rocks can be modelled as very thin 
and highly porous layers in a porous background. Such a 
medium saturated with a liquid exhibits significant 
attenuation and velocity dispersion due to wave induced 
fluid flow between pores and fractures. At low frequencies 
the elastic properties are equal to those obtained by 
anisotropic Gassmann theory applied to a porous material 
with linear-slip interfaces. At high frequencies the results 
are equivalent to those for fractures in a solid (non-
porous) background. The characteristic frequency of the 
attenuation and dispersion depends on the background 
permeability, fluid viscosity, as well as fracture density 
and spacing. The theoretical results are in good 
agreement with numerical simulations based on the 
reflectivity method generalized to poroelasticity. Moreover 
these experiments confirm that the results are valid for 
both periodic and random fracture systems. 

For randomly distributed penny-shaped cracks the 
frequency-dependent anisotropy can be modelled using a 
combination of low-frequency anisotropic Gassmann 
theory and a frequency correction based on the 
dispersion relationship of Hudson et al. (1996). 
Predictions of this combined model are in an excellent 
agreement with ultrasonic experimental results of Rathore 
et al. (1995). 
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