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Abstract

We show that the technique of migration/inversion (m/i)
as an integral over dip angles at an image point at depth
can be derived by the standard Kirchhoff m/i technique.
In this method, the opening angle between rays from
source and receiver is constrained to make a fixed angle
at the image point. Thus, this is a common opening angle
migration/inversion, in contrast to the more standard
common-offset or common-shot methods. This method
has the advantage of dealing more routinely with
multipathing of rays than the latter two methods do.
However, integration over dip angle can have some
computational disadvantages. We overcome these by
recasting the formula as an integral over all sources and
receivers, and migrating in parallel to generate a suite of
common-opening angle gathers. We show that the
transformation of coordinates from image point to surface
points leads to an additional amplitude weight involving
only geometrical factors and ray-generated factors
already required for true amplitude processing. Previous
derivations of this method use the theory of generalized
Radon theory and pseudo-differential operators/Fourier
integral operators, or they use least squares
methodology. Thus, our results are not new—although
some of the formulas are. Our derivation here arises from
more classical Kirchhoff modeling and inversion theory,
hopefully more accessible to the geophysical community.
Further, it demonstrates that this m/i method is an
alternative Kirchhoff method for a sorting of the data that
is different from common-shot or common-offset.
Integrating over dip angle at depth requires easy access
to all traces, since the required traces are defined by ray
tracing from the image point. Integrating over all sources
and receivers eliminates that difficulty. The new
expressions for the necessary scale factors introduced by
this transformation make that process more feasible.

Introduction

Migration/inversion (m/i) over dip angles at an image point
for a fixed opening angle between source and receiver
rays can be derived by the classical technique for
Kirchhoff inversion. “Migration-dip angle” is the direction
of the gradient of the total travel time function from source
and receiver points to the image point in the background

wave speed medium. The method treats multipathing of
rays between surface and depth points in a more natural
manner than do standard Kirchhoff common-shot or
common-offset methods. This inversion in fixed opening
angle is initially stated as an integral over migration-dip
angles at an image point, in contrast to the integration
over the surface source and receiver coordinates in the
aforementioned methods. Xu et al. [2001] demonstrate,
alternatively, that one can also carry out the integration
over source and receiver surface coordinates with a
windowing criterion that fixes the opening angle of the
rays at the output point. That approach introduces an
additional Jacobian of transformation connecting coor-
dinates at the image point with the coordinates at the
source and receiver point. We present new results here
about that Jacobian in 2D and 3D. We claim that these
new results lead to computational advantages in carrying
out the processing in this manner.

Integrating over dip angle requires that the data be sorted
by common opening angle between the associated rays
to source and receiver locations. Figure 1 shows the

relevant variables in 2D. In this figure, the unit vector v
points in the direction of the gradient of the sum of travel
times from source and receiver; ¢ denotes the angle that

v makes with the vertical and defines the dip direction.
Thus, initially, we are proposing an integration over dip
angles ¢ in our Kirchhoff inversion. The angle between o

or s and the dip vector is denoted by@ , in which case
26 is the opening angle between the rays. This angle
remains fixed in our m/i scheme.

Since opening angle at depth does not readily translate
into offset at the surface, the method requires access to
essentially all of common-shot or common-offset panels
for each output summation. Furthermore, there are
issues of adequate sampling; uniform steps in a sum over
subsurface dip angle do not translate into uniform steps in
source/receiver coordinates. The proposed transformation
to a sum over source and receivers addresses both of
these problems.

On the other hand, m/i, as an integral over dip angles,
offers the following advantages over common-shot or
common-offset m/i:

1.The output is a reflectivity map at known (constant)
specular angle 26, since that angle is an input
variable for each computation. For the output, this
method replaces more familiar common-offset output
panels, such as in Figure 2, with common opening
angle output panels, such as in Figure 3.
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Figure 1: Angle definitions for common opening angle
Kirchhoff migration-inversion carried out as an integration

over dip angles. v , the unit vector in the direction of the
sum of the gradients of the travel time; this vector defines

the migration dip direction. ¢ is the dip, the angle of v

with respect to the vertical. & is a unit vector in the
direction of the ray from the source x, to the output point
x, and & is a unit vector in the direction of the ray from
the receiver x, to the output point x. 0 is the common

opening angle between v and & and also the angle
between v and ¢ . Finally, o, = ¢ + § o, = ¢ — § are
the angles that & and ¢ make with the vertical.

2.The peak amplitude at an image location is proportional
to the reflection coefficient at that opening angle,
with a known constant scale factor. Thus, an
amplitude-versus-angle (AVA) plot is easily
computed from the peak amplitudes.

in addition, travel times and other ray quantities are
computed from points at depth rather than from
points at the upper surface, the Beylkin
determinant—an important factor in the inversion
process—is constant. In particular, the intense
computation of the 3D common-offset Beylkin
determinant is avoided in this approach. On the
other hand, we show how integration over dip can be
transformed back into a sum over sources and
receivers at the upper surface. This transformation,
then, relates our results back to those of Xu et al.
[2001].

3.1f

De Hoop et al. [1994] originally proposed m/i in dip angle,
with follow-on discussions by de Hoop [1998] and de
Hoop and Brandsberg-Dahl [2000]. The presentation of
de Hoop and Brandsberg-Dahl [2000] requires knowledge
of generalized Radon transforms and an understanding of
pseudo-differential/Fourier integral operators. Further,
they present formulas for only the most general
anisotropic elastic cases, from which it is not a trivial
matter to produce simpler results.

Figure 2: A 2D depiction of common-offset panels. Offset
increases from front to back.

Figure 3: A 2D depiction of common-opening angle
panels. Opening angle increases from front to back.

Xu et al. [2001] derived an acoustic m/i formula using a
least-squares approach; the type of processing we derive
here is their first iterate. Their results are presented in 2D
and they state the formula for dip angle inversion as a
sum over sources and receivers. The corresponding
formula for summation over dip angle requires just a one-
line derivation to deduce this formula from their equations
(33-35). Their equation (33) is a formula for model-
perturbation update as an integration over dip angle; (34)
is a formula for model perturbation (percentage difference
of, say, velocity) as an integration over all sources and
receivers; (35) is a formula for reflectivity (reflection
coefficient times a delta function as defined in our
Kirchhoff inversion formulation) as an integral over
sources and receivers; our result is a formula for
reflectivity as an integral over dip angle. In the integrals
over sources and receivers, Xu et al. [2001] use a window
function to restrict the source-receiver pairs to those
having approximately the right opening angle at the
output point. (We use this trick, as well, to derive the
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formulas for summation over sources and receivers from
the formulas for summation over dip angle.) Xu et al.
[2001] also provide numerical examples in 2D that
demonstrate the value of using all arrivals in the presence
of multipath ray trajectories. Their images were generated
from the formula for model perturbation as an integral
over sources and receivers. We expect similar quality of
output for the reflectivity function.

There are two new results here. The first is that common-
opening angle inversion as an integral in dip angle can be
derived via the more classical Kirchhoff inversion
technique as described in Bleistein et al. [2001]. We
believe that this derivation is more accessible to a
geophysical readership, and further demonstrates that
this is just a natural extension of the more familiar
Kirchhoff method. This approach places m/i as an integral
over dip angles in the class of Kirchhoff migration
formulas. Furthermore, the explicit formulas for the 3D
and 2.5D acoustic cases is also new. Detailed
derivations will be provided in a paper now in preparation.

The second new result is the simplifications of the 2D and
3D Jacobians that arise in connection with the mapping
between parameters at the image point and their values
at source and receiver points. We believe that these
simplifications overcome many of the drawbacks of
integration over dip angle at the image point.
Furthermore, in 3D, where computation of the Beylkin
determinant for common-offset data is computer
intensive, the computations here are much simpler. Thus,
we believe that, without the extra raytracing overhead,
migrating in parallel to obtain a suite of common-opening
angle gathers can actually be faster than migrating in
parallel to obtain a suite of common-offset gathers.

Other examples of computer output for examples of
common-opening angle inversion can be found in
Brandsberg-Dahl [2001], Koren and Kosloff [2001], Koren
et al. [2002] as well as Xu et al. [2001]. Note, however,
that only in Xu et al. [2001] is the computation carried out
as a sum over all sources and receivers. It is this type of
processing (common opening angle inversion by
summing over sources and receivers) that is made
simpler by the new formulas for Jacobians connecting
image point coordinates and source/receiver coordinates.

When multiple arrivals from a single subsurface location
occur, common-shot or common-offset m/i typically picks
up only one of these to accumulate into the sums that
produce the output---perhaps the first arrival or the most
energetic arrival. Picking up the contributions from
multiple specular returns requires extra complexity in the
migration program. This results in a migration which, at a
given image location, is a sum over two or more specular
terms wherever such multiple events occur, making
amplitude studies problematic.

Figure 4: A dipping reflector with two sets of specular rays
from the source-receiver pairs, x,, x, and x’, x,’,
respectively. They have the same offset, but different
opening angles at depth.

Figure 4 shows two specular ray pairs for a point x on a
dipping reflector and for source-receiver pairs, x;, x, and
x,’, x,’, respectively. Furthermore, these two ray pairs of
rays have the same offset between source and receiver,
but different opening angles at x. The opening angles are
indicated by the two arcs connecting the directions of the
source and receiver rays for each pair at the specular
point. A common-offset migration or inversion that uses
multiple passes to pick up all returns will add the two
outputs at the point x.

Even when a single specular return produces an image at
a point, the opening angle of the specular rays producing
the output is typically unknown a priori. Thus, amplitude
behavior must be resolved by further processing and
analysis. In one approach [Bleistein, et al. 2001], two
inversion formulas are processed; the quotient of the
outputs at peak amplitude estimates the opening angle
between the specular rays and, hence, the angle of the
angularly-dependent reflection coefficient. Although the
different formulas for these inversions are minimal, it is
necessary to retain two migrations in memory, pick peak
amplitudes and take a quotient to estimate the opening
angle.

Common-opening angle m/i, carried out as a sum over all
possible dip angles, provides a natural approach for
dealing with these shortcomings. For the example of
Figure 4, the migration will pick up both of these specular
returns, but on different common-opening angle panels.
Hence, no summing of contributions from the two different
specular arrivals occurs. This improved ap-proach comes
with an extra cost, as we describe below.

In our implementation, we shoot rays from the image
locations at depth, opposite to the directions of ¢ and

G- of Figure 1. Their arrival points at the upper surface
are the source and receiver locations, respectively. In
2D, these locations define the midpoint and offset of a
recorded trace. For each image point and half-opening
angle 8, we must have access to traces in the range of
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offsets and midpoints defined by these arrivals. The
same type of calculation is necessary for the Jacobians
that arise in computing the Green's function. The very act
of shooting rays from depth makes the computation of ray
trajectories, travel times and amplitudes less efficient than
procedures that shoot rays down from the upper surface.
This is a significant shortcoming of common-opening
angle m/i.

3D migration is further complicated by the orientation or
azimuth of the basic triad of directions,v , &s, and &, as
shown in Figure 5.

Q

Figure 5: Coordinates for migration in dip angle

characterized by dip direction v , in azimuthal angle 1,
and at fixed opening angle 6 between rays to source and
receiver. All are referenced to the output point x. ¢,
and @& are unit vectors in the directions of the rays from
source and receiver, respectively. v 4s,and & are in

the same plane, so that as, and ¢, spin around v as
varies. Note that two angles are required to define the

direction of v .

If we think of shooting the rays back to the acquisition
surface, their arrivals there are governed by the
properties of the wave speed in the overburden. As in 2D,
their locations define a source/receiver pair, that is, an
input trace location. (If this is not the case, we must
modify the theory to accommodate this deficiency in
acquisition, for example by performing a least-squares
m/i.) The vector v ranges over a unit hemisphere
centered at the image point. Recall that inversion
requires computation of the Beylkin determinant. The
formula for the Beylkin determinant is

— . (1)

3
2cos B :| av ov
(7051 da2

|h(x,9.,6)| = [

c(x)

Here, o, and o, are the parameters that describe the
source/receiver pairs. These could be the surface
coordinates of a midpoint in a common-midpoint survey,
the coordinates of the receiver in a common-shot survey,
or the parameters that define the location of v on the
hemisphere at the image point. The second factor in this
determinant characterizes the ratio of differential area

elements in the acquisition variables and the
corresponding patch on this unit hemisphere. That is,

3
. 2cosf
e, 9.0)|daxdauy = . ds. @)
c(x

When the parameters o, and a,are acquisition surface
parameters, access to the traces is systematic, but the
size and shape of the image patch on the hemisphere is
irregular, as in Figure 6. On the other hand, if the
parameters in (1) are polar or cylindrical coordinates, on

Figure 6: An image patch on the hemisphere at the
image point arising from a regular area patch on the
acquisition surface. The ratio of these differential patches
is the right factor in the Beylkin determinant in equation

™).

the hemisphere, then this second factor on the right side
of (1) is simple, but the source/receiver pair on the upper
surface must be determined by ray tracing. If we use
polar coordinates, the triple scalar product in (1) is simply
the sine of the polar angle; for cylindrical coordinates,
(such as used in the grid depicting the hemisphere in
Figure 6), the triple scalar product is equal to one!
Returning to the upper surface options, when the grid
points of the figure are the midpoints of a common-offset
data set, the triple scalar product is particularly difficult to
compute and the angle 8 varies from point-to-point, as
well. In contrast, recall that in a common-opening angle
m/i, 8 is constant. Thus the trade-off between upper
surface coordinates and coordinates at depth is a difficult
Beylkin determinant in the former case and a difficult data
access problem in the second case. Common-opening
angle m/i in sources and receivers adds some complexity
to the computation of the latter, but is still easier than
computing the former.

3D common-opening angle m/i.

The common-opening angle inversion formula in 3D is

D3(x,xy,xr)

as. (3

2
1 [2cosb
ﬁ(X,9>1P)= 2

c(x)

47 A(x,x)A(x,x,)

In this equation the 4’s are Green’s function amplitudes,

dsis the differential surface area on the hemisphere of v
introduced in equation (2), and x; and x, are the source
and receiver point that define a trace. The function D; is
the filtered observed data given by
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1 -7 (X,X¢,X
Dy(x.xg.x,) = ?fus(xs,xr,(u)F3 ()e (s r)dw
T

@)

with ugbeing the observed data on the trace define by the
source and receiver point, Tbeing the traveltime from
source to image point to receiver and

F3 @) = iwezstgn(w)[((x,xs,xr )n/2. )
Here, K is the KMAH index, which is the count of the
changes in sign of the ray Jacobians along the rays from
source and receiver to the image point. When there are
no caustics of the rays—no multipathing—X = 0 and the
filter reduces to the more familiar iw, which is the negative
of the time derivative. For K = 1, this filter is the Hilbert
transform of the first derivative. K-values of 2 or 3 yield
just the negatives of K = 0 or 1. Thereafter, the values of
the filter simply repeat. Thus, we need to compute only
two sets of filtered data, the derivative of the observed
data and the Hilbert transform of the derivative, in order to
have the required filtered data for the processing formula
in (3).

We now describe the transformation of the formula (3-5)
into an integral over all sources and receivers. We
remark that the source and receiver points on the upper
surface are each described by two coordinates. Thus, we
must transform a two-fold integral into a four-fold integral.
We do this through the device of introducing integration
over the opening angle and azimuth angle into (3) as
follows:

2
D,y (x,x,x ‘(91? ov
I 3 sr %

1 |2cos@
B(x.60,p) =
A(x,x )A(x,xr)‘aoc1 (9052

c(x)

4;12
0(8'-60)0 (y' -y )daldazde' ay’'.

®)

Here, we have used the explicit representation of dS in
(3), as defined by (1) and (2). Given a pair of dip angles,
a,, o, an opening angle, 8’, and an azimuthal angle, v, it
is possible to trace rays to the upper surface thereby
mapping these angle variables to the surface source and
receiver points x,, x,. We proceed as if the upper surface
is flat, so that these vectors are defined by horizontal
coordinates at z =0. Then, the integral in (6) can be
recast as an integral over the surface coordinates at the
cost of the introduction of another Jacobian that we will
denote by J. That result is

2
1 [2cos® Dy (x, x5, x, ‘df/ v
B(x.0,y) = 2 3 X—
47 c(x) A(x,x )A(x,xr)‘aoc1 it
0(0'-0)0(p' -y )Jdx, dy, dxdy, @)

As noted in the introduction, we have derived a new result
for the Jacobian J appearing here. This Jacobian is made
up a product of three separate Jacobians. One of these
describes the transformation of the four variables of
integration in (6) to the pairs of polar coordinates that
define the direction of the rays from the source and
receiver point to the image point. The relation between
the direction of the rays at depth and the Cartesian
coordinates on the upper surface is accomplished through
a ray Jacobian, exactly the Jacobian that appears in the
WKBJ Green’s functions. For ray parameters, we use the
polar angles of the vectors &, and & of Figure 5 and
the traveltime along the ray. The ray Jacobians are
denoted by J, and J,, respectively. Thus, we write

J = :]gl]gjr )

1 4 4 2 2 Lo g
— =2sin260'sina,(cos” a, cos” '-sin” a, sin"y'sin” 4'),
8

cosyg COS Y,

Jg=—""— Jy=—""— (8)

> 1/ .
c(xg) g c(x,) 4

In the last equation, y; and y, are the angles between the
rays to source and receiver and the surface normal at the
source and receiver points, respectively. Thus, as stated,
the 4X4 Jacobian of transformation of coordinates in (7)
has been written in terms of factors that are relatively
easily accessible. The ray Jacobians arise from the ray
tracing needed for computation of the Green’s functions.
The geometrical factors are required for description of the
neighborhood of the image point. If the acquisition
surface were not flat, then we need only add two other
Jacobians to describe the three dimensional surface
coordinates in terms of two parameters describing the
surface.

Discussion

In discrete computation, the delta functions in (6) and (7)
become box functions or windows of a prescribed width
around central values in 8 and y. Since we are proposing
integrations over all sources and receivers, this
computation only makes sense when computation for a
suite of choices of 8and yis carried out in parallel.
CPU time for such a process should be compared to
computation for a suite of common-offset values in 2D on
the upper surface with & = (4,h;). We believe that the
weight factors in (7-9) are simpler than the computation of
the 3D Beylkin determinant for common-offset data.
Thus, when migrating in parallel to obtain a suite of
outputs (opening angle gathers or offset gathers), the
computation of angle gathers may prove to be the more
efficient of the two methods.

2.5D Common opening angle m/|

The 2.5D and 2D m/i formulas share the same
geometrical factors, but require different filters on the
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data. The 2D formula is given in Xu et al [2001], except
that they claim that the geometrical factors are
approximate when, in fact, they are exact. Here, we
provide the 2.5D formula.

1 20059f1,6s +UrD2.5(x,xS,xr)

[2%]3/2 c(x) A2 (x,xS)Az(x,xr)

B(x.0) =

6(6'-0)Jdx,dxg (9)

In this equation, D, 5 is the 2.5D filtered data given by

1 —-ioT(x,x ,Xx )
D2.5(x,xs,xr) = qus(xs,xr,w)Fz.s(w)e s dw

(10)
with

iSign(w)[K(x,xs,xr Y l2+4m/4]
F, (@ =lole S

As above, T is the traveltime for source to output point to
receiver and K is the KMAH index, counting the caustics
that the rays pass through on the ttrajectory from source
to image point to receiver. Finally, the Jacobian J for this
2.5D (and 2D) m/iis

1 cosy cosy
Je———TI (12)
2c(x ) cx )
s 85 r r

Here, as above, y, and vy, are the angles between the rays
to source and receiver and the surface normal at the
source and receiver points, respectively; J; and J, are the
2D ray Jacobians with respect to the dip angles of &, and
G- of Figure 1. The factors os and o, are out-of-plane
geometrical spreading factors and the 4,’s are hybrid 2D
Green'’s function amplitudes that arise when the factors
of os or o, respectively, are factored out of the 3D
Green'’s function amplitudes. They are characterized by
their limits near zero distance by

1
lim A N -x |/ =—, |x- — 0. (13
im ) (xs x)4f|lx xs c(x) i x xs ( )

Conclusions

We have proposed a common-opening angle inversion
formula as an integral over sources and receivers that
samples all traces for traveltimes that contribute to the
inversion at every image point. This result starts with an
inversion in dip angle that fits the general form of
Kirchhoff inversion. The computation as an integral over
sources and receivers requires inclusion of weights
depending on the geometry at the image point, the source
point and the receiver point. We believe that these are
more straightforward than the weight for 3D common-
offset inversion.
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