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Abstract

One-way wave operators are powerful tools for forward
modeling and inversion. Their implementation, however,
involves introducing the square-root of an operator as a
pseudo-differential operator. A simple factoring of the
wave operator produces one-way wave equations that
yield the same traveltimes as the full wave equation, but
do not yield accurate amplitudes except for homogeneous
media and for some rare points in heterogeneous media.
Here, we present augmented one-way wave equations.
We show that these equations yield solutions for which
the leading order asymptotic amplitude as well as the
traveltime satisfy the same differential equations as do
the corresponding functions for the full wave equation.
Exact representations of the square-root operator
appearing in these differential equations are elusive,
except in cases in which the heterogeneity of the medium
is independent of the transverse-spatial variables. Here,
singling out depth as the preferred direction of
propagation, we introduce a representation of the square-
root operator as an integral in which a rational function of
the transverse Laplacian appears in the integrand. This
allows for an explicit asymptotic analysis of the resulting
one-way wave equations. We have proven that ray
theory for these one-way wave equations leads to one-
way eikonal equations and the correct leading order
transport equation for the full wave equation. By
introducing appropriate boundary conditions at 7 =0, we
generate waves at depth whose quotient leads to a
reflector map and estimate of the ray-theoretical reflection
coefficient on the reflector. Thus, these true amplitude
one-way wave equations lead to a “true amplitude wave
equation migration (WEM)” method when we use the
same imaging condition as is standardly used in WEM. In
fact, we have proven that applying the WEM imaging
condition to these newly defined wavefields in
heterogeneous media leads to the Kirchhoff inversion
formula for common-shot data. This extension enhances
the original WEM. The objective of that technique was a
reflector map, only. The underlying theory did not
address amplitude issues. Computer output using
numerically generated data confirms the accuracy of this
inversion method. However, there are practical
limitations. The observed data must be a solution of the
wave equation. Therefore, the data over the entire survey

area must be collected from a single common-shot
experiment. Multi-experiment data, such as common-
offset data, cannot be used with this method as presently
formulated. Research on extending the method is
ongoing at this time.

Introduction

One-way wave equations provide fast tools for modeling
and migration. These one-way equations allow us to
separate solutions of the wave equation into downgoing
and upgoing waves except in the limit of near-horizontal
propagation. The original one-way wave equations used
for wave equation migration (WEM) [Claerbout, 1971,
1985] were designed to produce accurate traveltimes, but
were never intended to produce accurate amplitudes,
even at the level of leading order asymptotic WKBJ or
ray-theoretic amplitudes. As such, classic WEM provides
a reflector map consistent with the background
propagation model, but with unreliable amplitude
information.

The objective of this presentation is to describe a
modification of those one-way wave equations to produce
equations that provide accurate leading order WKBJ or
ray-theoretic amplitude as well as accurate traveltime.
The necessary modification of the basic one-way wave
equations is motivated by considering depth-dependent
(v(z)) medium. In that case, through the use of Fourier
transform in time and transverse spatial coordinates
(x,y), we reduce the problem of modifying the one-way

equations to the study of ordinary differential equations.
There, it is relatively simple to see how to modify the
equations used by Claerbout in order to obtain equations
that provide leading order WKBJ amplitudes, as well.
This leading order amplitude is what we mean by “true
amplitude” for forward modeling.

For heterogeneous media, v = v(x,y,z), the same one-
way wave equations still provide true amplitudes.
However, now the transverse wave vector (kx,ky)must

be interpreted as differentiations in the corresponding
dual spatial variables. Further, our modified one-way
wave equations involve square-roots and divisions by
functions of this transverse wave vector. We provide an
interpretation of these operators through some basic
ideas from the theory of pseudo-differential operators.

We provide a relatively simple representation of the one-
way differential operators. This, in turn allows us to prove
that the ray-theoretic solutions of these equations satisfy
the separate eikonal equations for downgoing and
upgoing waves, but the leading order amplitudes also
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satisfy the same equation—the transport equation—as
does the leading order amplitude for the full wave
equation. It is in this sense that we designate the
solutions of these one-way wave equations as “true
amplitude” solutions.

Having these true amplitude one-way equations allows us
to develop a “true amplitude” WEM for heterogeneous
media. To date, we only have numerical checks on this
method for (v(z)) media, where the pseudo-differential
operators revert to simple multiplications in the temporal/-
transverse-spatial Fourier domain. However, we are able
to prove that the reflection amplitude agrees with the
amplitudes generated by Kirchhoff inversion (true
amplitude Kirchhoff migration) as developed by one of the
authors [Bleistein, 1987, Bleistein et al. 2001] and
colleagues. This proof is valid in heterogeneous media.
Thus, at this time, the proof of validity is ahead of the
computer implementation in terms of generality and it
anticipates a reliable computer implementation in general
heterogeneous media. It confirms that the output of this
method is a reflector map with the peak amplitude on the
reflector being in known proportion to an angularly
dependent reflection coefficient at a specular reflection
angle.

This type of inversion requires common-shot data with the
receiver array covering the entire domain of the survey.
This is a serious obstacle for practical implementation;
such data gathers are still relatively rare. To date, we do
not have an extension of this true amplitude WEM to
other source/receiver configurations.

Dynamically correct one-way wave equations
We begin by considering the wave equation in three
spatial dimensions and time:
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Let us first consider the wave equation in a homogeneous
medium and apply Fourier transform in time and in the
transverse spatial variables.
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Because the wavespeed is constant, it is possible to
transform equation (1) into

LW=[i$iszi:ikz]W=O' @)
Jz dz

The separate one-way equations implied in (3) have exact
solutions that are also solutions of that two-way equation:

{% ik, }A= expfFik.z}=0" )

Here, the A’s are constants.

For wavespeed v(z), these solutions are no longer valid.

For (2), we would then content ourselves with asymptotic
WKBJ solutions. Then, we would want the solutions of
the one-way equations to agree, at least asymptotically,
with those solutions of the two-way equation (1). For the
one-way operators in (4), the exact solutions have the
same traveltimes as the WKBJ solutions to (2), but do not
have the same amplitude. This leads us to look for ways
to modify the two one-way equations in (4), so that the
new equations provide a transport equation that yields the
same amplitude as in (2).

Let us introduce the scaling
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and rewrite the wave equation in the form
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Now, we assume a solution to (6) of the form
W= Az, p)e "7 (7

and write down the eikonal and transport equations,
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Substituting the same form of solution in (6) into the one-
way equations (4) yields the two branches of the eikonal
equation, but has as transport equation only d4/dz=0.
The last form of the transport equation in (9) suggests
terms to add to the two equations in (4) in order to obtain
one-way wave equations with the right amplitude—the
right dynamics—for this v(z) case. We first transform (4)
to the variables introduced in (5) and then modify those
equations to
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These are our modified one-way wave equations. In the
original variables, they become
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For v(z) media, these one-way wave equations produce

the same eikonal equation and transport equation as
does the two-way wave equation, (1).

For heterogeneous media in which v=v(x,y,2),
traditional WEM continues to use the one-way wave
operators in (3). The transverse wave vectors in those
equations are interpreted as derivatives in the transverse
directions and various rational approximations are made
to avoid the square-root of differential operators implicit in
the representation. In fact, interpretation and
manipulation of such operators is a major component of
the theory of pseudo-differential operators. Through
proper interpretation, these operators can be analyzed
rigorously. In G. Q. Zhang [1993], the second author has
done just this. To explain, we think of the transverse
wave vector and frequency in (11) as being symbolic
place-holders for differentiations:

iw[ a/or and j(k k)0 —(0/0x,9/y)-

We then think of ik, as a symbol for a differential
operator. More precisely, we rewrite (11) as

LiW=[i:A]W—rW=0 (12)
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with A and T' being pseudo-differential operators with
symbols, A and y given by
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Here, it is easy to check that the expression for y is
exactly the same as the last factor in (11).

In completely heterogeneous media—v = v(x, y,z) —G.

Q. Zhang has shown that the eikonal equations for (11)
provide the two branches of the eikonal equation for (1).
Furthermore, transport equations for (11) are both the
same as the transport equation for (1). Thus, he has
proven that the one-way wave equations (11) provide the
dynamics as well as the kinematics of the full wave
equation.

His proof was greatly facilitated by an important identity
that he derived, namely, that

hmik, =,-‘”{1_1f e (vk)ds}. (14)
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This identity interprets the square root operator as a
rational quotient of operators with the square root
appearing only in the integration variable. The divisions
here and in the second part of (13) can be interpreted as
inverse wave operators, which we might think of as
convolutions with appropriate Green’s functions.
Alternatively, we could introduce an auxiliary function
through the equation

[ s 6vu) faipz0= 00, w20 (19

and then rewrite (12) as
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Through this device of introducing the identity in (14) and
the auxiliary function in (15), we are able to interpret the
pseudo-differential operators in (12) in terms of ordinary
operators and ordinary solutions of differential equations.
The proof that the correct eikonal and transport equations
arise from (12) then becomes a fairly straightforward if
somewhat tedious calculation.

True amplitude wave equation migration

Here we describe our proposed true amplitude WEM
motivated by the dynamically correct one-way wave
equations of the previous section. We begin by
introducing Claerbout's [1971,1985] classic WEM and
explain how we modify the governing equations and
boundary data to obtain our proposed true amplitude
WEM.

The standard method uses the one-way propagators of
(4), even for heterogeneous media. More specifically,
suppose that the reflected wave field from a single source
experiment is observed at z =0 for all time. Then the
source and observed wavefields are assumed to be
solutions of the equations

J
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U(x,y,z=0,0) = 0(x,y;0),

where D is the downgoing (source) wavefield and U is
the upgoing wavefield with the observed data Q. The
image is then produced as an impedance or reflectivity
function at every image point defined by

UGEw) , (19)

R
()= fD(x w)

While this result produces a reflector map, it does not pro-
vide accurate amplitude information. To achieve that, we
use the solutions of our modified true amplitude one-way

wave equations, (12). That is, we introduce p, and Py
as solutions of the following problems.

[é)
(E+A—F)pn=0, (20)

pr(x,y,z=0;0) = —%A’](S()?—X'S),
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(i—A—r pu =0, (21)
9z

Py (X, ¥,z =0,w) = O(x, y; ).

Here, we have modified the equations and we have also
modified the boundary data for p, . The reason is that

this is the proper data to model a point source for the
original wave equation. Note that this modification
involves both a scaling and phase shift because of the
in the definition of A in (13). Next, we modify the

imaging condition (18) to use our new wavefields. That
is, we set

= py(X0) (22)

R(X) = [Pl dw
I Pp(X;0)

See Zhang et al. [2001,2002].

Comparison of true amplitude WEM and Kirchhoff
inversion.

Relying on G. Q. Zhang'’s [1993] proof of the equivalence
of the solutions of the one-way wave equations with the
solutions of the full wave equation, we derive the
asymptotic form of (20) and (21) in terms of the
traveltimes and amplitudes of the full wave equation.
That result is

=y _ o (i COSA, AT X)) op o] (23)
R(x)—2ffza) m A()“c;)"c‘\,)e dx,dy..

Here, v, is the wave speed at the receiver point and «,
is the emergence angle of the ray from the image point to
the receiver point. Furthermore, the amplitudes and
phases are solutions of the eikonal and transport
equations for the full wave equation. Their equivalence
with the solutions of the one-way wave equations is a
consequence of G. Q. Zhang'’s proof. This is the formula
for common shot Kirchhoff inversion in Bleistein [1987]
and Bleistein et al. [2001] as expressed by Hanitzsch
[19971].

In summary, then, we have proven that the one-way wave
equations introduced in (12) produce WKBJ solutions that
agree with the solutions of the full wave equation (1) both
kinematically and dynamically. Further, we have shown
that if we use these equations and appropriate boundary
data derived from the common-shot seismic experiment,
the WEM imaging condition leads to the Kirchhoff
common-shot inversion formula. An important difference,
however, is that the solutions generated from the one-way
wave equations include all multi-pathing arrivals at the
image point, whereas this is problematic for Kirchhoff
methods that only use the simplest WKBJ Green’s
functions.

Numerical test

To show how true amplitude common-shot migration
works, we apply it to a 2-D horizontal reflector model in a
medium with velocity v =2000+ 0.3z . Recall from the
theory that in this case, the modeling and migration can
be carried out in the transverse spatial and temporal

Fourier domains, with (k,,k,) being the simple

transverse part of the wave vector.
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Figure 1: Single shot data record
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Figure 2: Finite difference migration using (18) for the
imaging condition
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Figure 3: Peak amplitudes along the four reflectors. The
wide angle error decreases with depth of the reflector.
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The input data (Figure 1) is a single shot record over four
horizontal reflectors from density contrast. Figure 2 shows
the migrated shot record using the conventional common-
shot migration algorithm (19). The peak amplitudes along
the four migrated reflectors are shown in Figure 3,
normalized to the geometrical optics reflection coefficient
along the reflector. This method has a phase error as
noted above. The consequent phase error has been
corrected during the migration. However, the migrated
amplitudes are poor, especially on the reflector at depth
z =1000m along which the reflection angles vary over a
wide range. (This method has incorrect angular
dependence when compared to true amplitude reflectivity
or the geometrical optics reflection coefficient at each
point.) The wide angle peak amplitudes decrease
monotonically with increasing depth. The greatest error
occurs at wide angle, with the result along the shallowest
reflector being the worst. However, the error is zero at
zero offset; in this limit, (kx,ky) =(0,0) and cosa, = 1.

120 140 160 180 200

Pu/Pd imaging condition

Figure 4: Finite difference migration using (20) for
imaging.
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Figure 5: Peak amplitudes along the four reflectors. The
wide angle error decreases with depth of the reflector.

Figure 4 shows results of true amplitude common-shot
migration using (23). The peak amplitudes along the

reflectors are shown in Figure 5. From this plot, we
clearly see that the true amplitude algorithm recovers the
reflectivity accurately, aside from the edge effects and
small jitters caused by interference with wraparound
artifacts.

Conclusions

Common-shot migrations offer good potential of imaging
complex structures, but the conventional formulations of
such migrations produce incorrect migrated amplitudes.
Here, we have described true-amplitude one-way wave
equations that allow us to extend the standard method
both for forward modeling and for wave equation
migration. These modified one-way wave operators are
developed with the aid of pseudo-differential operator
theory. We have proven that these new one-way wave
equations provide solutions that agree dynamically, as
well as kinematically, with the solutions of the full wave
equation. Further, we have proposed a new approach to
WEM, transforming it into a true amplitude process,
meaning that it produces an inversion output that agrees
asymptotically with Kirchhoff inversion: it produces a
reflector map with peak amplitudes on the reflector in
known proportion to the geometrical optics reflection
coefficient. We have proven this claim, as well. With the
aid of a simple numerical example, we demonstrated that
the migration method we proposed does calibrate
common-shot migrations by correcting both their
amplitude and phase behavior. We did this for an
example in which the wave speed is depth-
dependent—v = v(z) . The new method actually builds a

bridge between true amplitude common-shot Kirchhoff
migration and the migrations based on one-way wavefield
extrapolation.

Acknowledgements

G. Q. Zhang's research was partially supported by the
Major State Basic Research Program of P. R. China
(G1999032800). All three authors further acknowledge
the support and approval for publication of Veritas DGC.

References

Bleistein, N., 1984, Mathematical Methods for Wave
Phenomena: Academic Press, New York.

Bleistein, N., 1987, On the imaging of reflectors in the
earth. Geophysics, 52, 931-942.

Bleistein, N., J. K. Cohen and J. W. Stockwell, Jr., 2001,
Mathematics of Multidimensional Seismic Imaging,
Migration and Inversion: Springer-Verlag, New York.

Claerbout, J. F., 1971, Toward a unified theory of reflector
imaging: Geophysics, 36, 3, 467-481.

Claerbout, J., 1985, Imaging the Earth's Interior. Blackwell
Scientific Publications, Inc., Oxford.

Hanitzsch, C., 1997, Comparison of weights in prestack
amplitude-preserving Kirchhoff depth migration:
Geophysics, 62, 1812-1816.

Zhang, G., 1993, System of coupled equations for
upgoing and downgoing waves: Acta Math. Appl. Sinica,
16, 2, 251-263.

Finhth Intarnatinnal Canarace nf Tha Rrazilian Rannhvciral QAariaty



TRUE AMPLITUDE ONE-WAY WAVE EQUATIONS AND WEM

Zhang, Y., Sun, J., Gray, S. H., Notfors, C., and Bleistein,
N., 2001, Towards accurate amplitudes for one-way
wavefield extrapolation of 3D common-shot records:
71st Ann. Mtg., Soc. Expl. Geophys., Expanded
Abstracts.

Zhang, Y., Sun, J., Gray, S. H., Notfors, C., Bleistein, N.,
and Zhang, G., 2002, True amplitude migration using
common-shot one-way wavefield extrapolation: 64th
International Meeting of the EAGE, Expanded Abstracts.

Finhth Intarnatinnal Canarace nf Tha Rrazilian Rannhvciral QAariaty



