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Abstract

Equations for elastic impedance (EI) are derived for
vertically cracked rocks. Transverse isotropy with
horizontal axis of symmetry (i.e., the HTI model) is
used for simulating first–order effects of azimuthal
anisotropy caused by vertical small fractures. Two dis-
tinct approximations for PP–wave reflection (RPP) co-
efficients in HTI media are introduced into previous
isotropic formulation for the EI equation. The gen-
eral expression for both approaches is presented as
a product of two terms. The resulting equations differ
only in the correction to anisotropy, i.e., the term which
controls incorporation of the effects of anisotropy into
the EI technology. Due to the use of distinct anisotropy
parameters and the definition of reference isotropic
velocities, inaccuracies are found in computing ap-
proximate RPP coefficients with the derived EI equa-
tions. These inaccuracies are mainly attributed to the
use of both the Thomsen’s parameter δ and the S–
wave splitting parameter γ(H) by one of the derived EI
equations. Assumption of invariability for the squared
ratio between the average of S–wave to P–wave ref-
erence velocities seems to have negligible impact on
the above–mentioned inaccuracies.

Introduction

The analysis of amplitude–versus–offset (AVO) re-
sponses is currently performed by using well logs
(Ross, 2000). In this context, calibration and inver-
sion of near–offset seismic amplitudes extensively use
the rock attribute known as acoustic impedance (AI),
which is easily obtained by multiplying (P– or S–wave)
sonic and density logs. However, typical classes of
AVO responses, depicted for instance in Rutherford
and Williams (1989), are impossible to simulate using
only the AI attribute. As a result, the EI technology

is the leading alternative to replace the AI attribute in
investigating far–offset amplitude anomalies.
The EI technology was first proposed by Connolly
(1998, 1999) as a way to promote AVO analysis at
greater offsets (i.e., regions of high angles of inci-
dence). The EI equation clearly shows dependence
on P– and S–wave velocities and density, and on the
incidence phase angle. If normal incidence is taken
into account, the EI equation reduces to AI. In view
of this outcome, EI is currently assumed as a rock
attribute analogous to AI but for varying incidences.
The benefits of EI for AVO studies using well logs was
then rapidly recognized, culminating with the SEG Vir-
gil Kauffman award in 2001 (TLE, November 2001,
page 1296).
The EI technology facilitates the integration of seismic
data with well (sonic and density) logs and rock lab-
oratory measurements. Additionally, the technology
can be used as a pore–fluid discriminator at far off-
sets since it allows simulating typical seismic ampli-
tude anomalies at a wide range of incidences. How-
ever, the EI equation focuses only on isotropic me-
dia with small contrasts in rock properties. Despite a
strategy can be designed to cope with high contrasts
(Martins, 2003), the issue of neglecting anisotropy still
persists. As published for instance in Thomsen (1986)
and Wright (1987), seismic anisotropy, even with weak
strength, represents a non–negligible phenomenon in
sedimentary basins. The restriction of the EI equation
to weak–contrast isotropic media thus precludes the
study of azimuthal AVO responses caused by seismic
anisotropy.
In the formulation of the equation for EI, Connolly
(1999) used an approximate expression for RPP co-
efficients at plane interfaces separating weak–to–
moderate isotropic media (Aki and Richards, 1980).
Thus, in order to allow the study of seismic anisotropy
by means of the EI technology, a suitable approxima-
tion for RPP coefficients in anisotropic media must be
introduced into Connolly’s (1999) formalism. Conse-
quently, the restrictions imposed on the use of the re-
sulting EI equation will be motivated by the anisotropic
symmetries involved in the RPP coefficient approxima-
tion utilized in the formulation.
In order to incorporate seismic anisotropy into the
EI technology, Martins (2002) took advantage of
the approximation for RPP coefficients in arbitrary
anisotropic media studied in Pšenčı́k and Martins
(2001). The resulting novel EI equation is formed
by multiplication of two terms. The first term is rec-
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ognized as Connolly’s (1999) isotropic EI equation,
while the second term is interpreted as the first–order
correction from isotropy to weak anisotropy. The ex-
pression for the correction term is written in terms of
the weak anisotropy (WA) parameters (Pšenčı́k and
Gajewski, 1998), which are dependent on arbitrary
choice for the reference isotropic velocities. In sum-
mary, the correction term incorporates all parame-
ters (i.e., the azimuthal information and the density–
normalized stiffnesses) necessary to the study of
transverse isotropic and orthorhombic media. The
novel anisotropic EI equation thus allows analyzing
azimuthal AVO variations caused, for instance, by ver-
tical small fractures (i.e., cracks). If the cause of seis-
mic anisotropy is attributed only to parallel vertical
cracks, the transverse isotropic model with horizon-
tal axis of symmetry (HTI) can be used in the inves-
tigation. Note that the HTI assumption implies that
the vertical cracks are circular and embedded in an
isotropic matrix (Rüger and Tsvankin, 1997).
Studying RPP coefficients at weak-contrast plane in-
terfaces separating HTI media, Rüger (1996) de-
rived a very useful approximation for the inves-
tigation of seismic anisotropy caused by vertical
cracks. Although written in terms of Thomsen’s (1986)
anisotropy parameters δ, ε and γ, and for specific ref-
erence isotropic velocities, Rüger’s first–order RPP co-
efficient formula has the same general form of the
relation studied in Pšenčı́k and Martins (2001) for
HTI models. It is thus similarly possible to intro-
duce Rüger’s (1996) RPP approximation into Con-
nolly’s (1999) formalism in order to incorporate effects
of vertical cracks on the EI equation. The resulting
equation differs only in the dependence of the correc-
tion term to anisotropy of Martins (2002) EI approach.
In this work, both approximations for the EI technology
in vertically cracked media are investigated in terms of
numerical accuracy.

Approximate reflection coefficients

The need for accounting seismic anisotropy into az-
imuthal AVO analysis has stimulated investigations
on scattering coefficients at interfaces separating
anisotropic rocks (Banik, 1987; Wright, 1987). Due
to the complexity of exact formulas, however, a thor-
ough understanding on the dependence of RPP co-
efficients on elastic parameters can hardly be ac-
complished. Fortunately, small contrasts in velocities
and density and weak anisotropy behavior found in
most rocks (Thomsen, 1986) support derivation of lin-
earized approximations for the coefficients (Thomsen,
1993; Rüger, 1996; Vavryčuk and Pšenčı́k, 1998). In
general, for a qP–wave incidence on a weak–contrast
interface separating weakly anisotropic media, the for-
mulas for linearized coefficients can be condensedly
written as

RPP(ϕ, θ) = Riso
PP(θ) + ∆RPP(ϕ, θ), (1)

where Riso
PP(θ) is the well-known approximate formula

for reflections at weak–contrast plane interfaces sep-
arating isotropic media (Aki and Richards, 1980). The
formula for Riso

PP(θ) depends on the relative contrasts
in bulk density (∆ρ/ρ̄) and in P–wave (∆α/ᾱ) and
S–wave (∆β/β̄) phase velocities. Contrasts across
an interface are denoted by ∆ (i.e., density contrast:
∆ρ = ρ2 − ρ1), and averages by a bar over the cor-
responding quantity. Subscripts 1 and 2 index upper
and lower medium, respectively.
The additional term in Eq. (1) represents first–order
correction from isotropy to weak anisotropy. It can be
expressed as

∆RPP(ϕ, θ) = Aani cos2 θ + Bani sin2 θ (2)

+ Cani sin2 θ tan2 θ.

To simplify notation, the subscript PP is used hence-
forth in place of qPqP.
The RPP approximation studied in Pšenčı́k and Mar-
tins (2001) is quite suitable for the purposes of this
work. The dependence of the approximation on the
incidence angle θ and on the direction of the mea-
surement profile (i.e., azimuth) ϕ is clearly observed,
as well as linearity of the prevailing terms of the corre-
sponding relationship for Eq. (3). For a plane interface
separating HTI media with coinciding horizontal axes
of symmetry, the correction to anisotropy ∆RPP(ϕ, θ)
of the approximation, which is indeed the linearized
version of Eq. (39) of Vavryčuk and Pšenčı́k (1998),
reduces to

Aani =
1
2

A1,

Bani =
1
2

(B1 cos2 ϕ + B2 sin2 ϕ ),

Cani =
1
2

(C1 cos4 ϕ + C2 sin4 ϕ

+
1
4

C3 sin2 2ϕ ). (3)

The relationships for Ai, Bi and Ci depend on con-
trasts and combinations of contrats in WA parame-
ters εz, εx, δx, γx and γy (Pšenčı́k and Gajewski,
1998) and on the ratio involving the reference veloci-
ties, k = (β̄/ᾱ)2. Note that derivation of Vavryčuk and
Pšenčı́k’s (1998) RPP coefficient makes no a priori as-
sumption for reference isotropic velocities.
Under same conditions of weak contrast across inter-
face and weak anisotropy for a similar HTI/HTI model
given above, Rüger (1996) derived slightly different
expressions for Bani and Cani

Bani =
1
2

(∆δ(V) + 8k ∆γ(H) ) cos2 ϕ,

Cani =
1
2

(∆ε(V) cos4 ϕ +
1
4

∆δ(V) sin2 2ϕ ). (4)

As noticed, Rüger’s approximation neglects the prod-
uct Aani cos2 θ in Eq. (3). Moreover, the relation for
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Bani takes into account that, for weak anisotropy, the
velocity β⊥ for the S–wave polarized perpendicularly
to the isotropy plane (ϕ = 90o) can be approximated
in terms of the shear–wave splitting parameter γ(H)

as β⊥ = β‖(1 − γ(H)). As a result, the correspond-
ing approximation for the shear–wave modulus holds:
G⊥ = G‖(1− 2γ(H)).
The anisotropy parameters δ(V) and ε(V) in Eqs.
(4) are defined in Thomsen (1986) for transversely
isotropic rocks in which the vertical axis corresponds
to the axis of symmetry (i.e., VTI media). Further-
more, in contrast to Thomsen’s (1986) parameter γ(V),
which is defined with respect to the vertical, γ(H) is de-
fined with respect to the horizontal axis of symmetry
of the HTI medium. Rüger (1996, 1997) and Tsvankin
(1997) give the relation between γ(H) and γ(V) as

γ(H) = − γ(V)

1 + 2γ(V)
. (5)

Inspection of both RPP approximations given above
shows remarkable differences in the relation for
∆RPP(ϕ, θ). Clearly, linear anisotropy measures are
used in relations (3), while distinct anisotropies are in-
troduced in equations (4). Further observation refers
to the different choice for the reference isotropic ve-
locities in each given RPP approximation. As shown
below, these differences are transferred into the cor-
responding EI equations derived by using Connolly’s
(1999) formulation.

EI approaches for HTI media

Following Connolly’s (1999) formulation, the function
EI is assumed analogous to AI but for varying inci-
dence phase angles θ. Reflection coefficients are thus
approximated as

RPPn ≈
EIn − EIn−1

EIn + EIn−1
≈ 1

2
∆EI
EI

. (6)

Since anisotropy is incorporated into the formulation,
EI must also be dependent on the measurement pro-
file. Hence, in Eq. (6), RPP ≡ RPP(ϕ, θ) and EI ≡
EI(ϕ, θ).
After algebraic manipulations, the general expression
for the EI technology in anisotropic media can then be
stated in terms of the following product

EI(ϕ, θ) = EI(θ) ∆EI(ϕ, θ). (7)

The first term represents the isotropic approach for
EI given in Connolly (1999). It is written below in a
slightly different form

EI(θ) = ρα
(
αtan2 θ G−η

)
, (8)

where η ≡ η(θ) = 4k sin2 θ and k = (β̄/ᾱ)2. Note that
application of Eq. (8) to well logs implies invariability
for the ratio k.

The correction term of the product in Eq. (7) is related
as

∆EI(ϕ, θ) = exp
[

2
∫

∆RPP(ϕ, θ)
]

. (9)

Consequently, the EI equation has a correction term to
anisotropy which is fully dependent on the correction
term for the corresponding RPP approximation.
Inserting Vavryčuk and Pšenčı́k’s (1998) approxima-
tion for HTI media into Connolly’s (1999) EI formula-
tion yields an expression for the argument of the expo-
nential function in Eq. (9). On the other hand, using
Rüger’s (1996) RPP approximation leads to a rather
distinct relation for ∆EI(ϕ, θ). Analysis of both result-
ing EI equations reveals that main differences are in
the choice for the anisotropy parameters and for the
reference isotropic velocities. Moreover, since a first–
order perturbation methodology was used to derive
the corresponding RPP expression, it is remarkable
that the EI equation obtained via Rüger’s RPP approx-
imation depends on the nonlinear Thomsen’s δ(V). In
the numerical tests below, the computation of RPP co-
efficients using the approximation in Eq. (6) is investi-
gated. The main purpose is to verify the accuracy of
both EI equations obtained for vertically cracked me-
dia.

Numerical tests

By using the approximation in Eq. (6), RPP coeffi-
cients were calculated for the model shown in Figure 1
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Figure 1: Model consisting of an isotropic medium over a verti-
cally fractured (HTI) material. Upper and lower elastic parameters
indicate weak contrast across the interface. The [weak anisotropy]
HTI medium is defined by the matrix of density-normalized stiff-
nesses in km2/s2.

(Rüger, 1997). The model consists of an isotropic
overburden and a reflecting vertically cracked medium
simulated by an HTI elastic matrix. The weak contrast
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Figure 2: Exact reflection coefficients calculated over the model
in Figure 1, via raytracing. Incidence from 0o to 40o.

assumption is supported by the small relative con-
trasts in α, β and ρ.
The display of exact coefficients in Figure 2 shows
that, although anisotropy is weak for the model in
Figure 1, reflections vary significantly along azimuths
near the symmetry axis, ϕ = 0o. Comparison of
plots for approximate coefficients, calculated by apply-
ing each resulting expression for ∆EI(ϕ, θ), revealed
good agreement with exact computations. Calculation
of constant k took into account the following reference
velocities:

√
A33 for P waves, and

√
A44 for S waves.
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Figure 3: Absolute relative errors computed with the exact coef-
ficients in Figure 2 and the approximate coefficients calculated with
derivation of ∆EI(ϕ, θ) using Vavryčuk and Pšenč́ık’s (1998) RPP

equation.

In computing approximate coefficients, the EI equa-
tion obtained by using Rüger’s (1996) RPP approxima-
tion is far less accurate. This can be verified by plot-

ting the corresponding absolute relative errors. The
displays in Figures 3 and 4 show similar magnitudes
within the azimuthal range from 60o to 90o, i.e., ap-
proaching the isotropy plane. On the other hand, ap-
proaching the symmetry axis, the errors increase sig-
nificantly. As shown in Figure 4, if the correction to
anisotropy in the EI equation obtained via Rüger’s RPP

approximation is chosen, the errors in the computa-
tion of approximate coefficients via Eq. (6) will be
even higher along the symmetry axis. In computing
RPP coefficients with the derived EI equations, negli-
gible contribution to the verified errors will be obtained
if same reference isotropic velocities are used.
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Figure 4: Absolute relative errors computed with the exact coef-
ficients in Figure 2 and the approximate coefficients calculated with
derivation of ∆EI(ϕ, θ) using Rüger’s (1996) RPP equation.

Conclusions

The derived EI equations can facilitate the study of
vertical cracks in rocks. The equations reinforce the
integration aspect of using well logs and laboratory
measurements in AVO analysis. Now, by applying an
appropriate EI equation, azimuthal amplitude anoma-
lies can be investigated far away around the borehole.
The critical point, however, is the determination of the
stiffnesses for the rock under assumption. To sort out
this issue, the need for laboratory measurements is
unquestionable. The inaccuracies found by testing the
novel EI equations in computing RPP coefficients were
probably caused by the use of the Thomsen’s parame-
ters derived for VTI media, i.e, in respect with the ver-
tical axis of symmetry. Further tests have shown that
use of Thomsen–like parameters defined for HTI me-
dia, i.e., in respect with the horizontal axis of symme-
try, decreases inaccuracies in computing approximate
coefficients by means of corresponding EI equation.
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