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Abstract  

Gaussian beam (GB) methods have been used as a tool 
for modeling and imaging, due to its regularity in critical 
and caustic regions. We then use its features in the 
investigation of its sensitivities with respect to classical 
theories of modeling, such as ray theory and finite 
difference (FD) schemes. This is done by using a 
superposition of all GB’s in the close vicinity of a specified 
receiver. Amplitudes are picked along synthetic sections 
of GB’s and ray theory, and the results are compared to 
the ones derived from FD schemes. The results showed 
that GB predicts a smooth and continuous increase in 
amplitude, following the tendency of FD, while ray theory 
shows a sudden peak around the critical point of 
observation.  
 
Introduction 
 
In seismic methods, zero order ray theory has been 
widely used for modeling, migration and inversion 
problems. However, ray theory can only be effectively 
applied to smooth media, where the prevailing 
wavelength is much smaller than the characteristic 
structural dimensions we want to image. In this case, 
some phenomena, such as diffractions observed in 
complex geology settings, or in a laterally varying media, 
cannot be simulated adequately. Some other restrictions 
are related to the use of time-consuming two-point ray 
tracing algorithms and ocasional singularities inside the 
model. We mention some of these singularities in the 
cases of imaging fold flanks in salt domes and reflectors 
discontinuities, where generally are given rise to caustic 
observations and shadow zones. 
 
The use of paraxial wavefields has been an attractive and 
efficient way of dealing with zero order ray theory 
limitations (Červenỳ, 1983). In general, these wavefields 
can be of real and complex nature. The real paraxial 
theory is widely known in the field of classical optics, 
while the complex paraxial theory is widely applied in 
quantum optics, where Gaussian beams are a well-known 
entity in laser propagation. In seismic imaging, the real 
paraxial theory has successfully been applied in stacking 
processing and is a key tool in true amplitude migration 
(Schleicher et al, 1993). On the other hand, complex 
paraxial theory is used for description of laterally varying 

wavefields in 2D and 3D media (Popov, 1996; Červenỳ, 
1982a, 1982b) and migration methods (Hill, 2001).  
 
One of the differences among the paraxial wavefields and 
zero order ray theory is the regularity description of the 
seismic field in singular regions. In fact, Gaussian beams 
are specially regular in regions of the wavefield where 
caustic prevail. Moreover, the Fermat principle based two 
point ray tracing is not needed, since in the case of the 
present paper the observed displacement on every record 
point is represented by a superposition of all paraxial 
wavefield in the vicinity of the receivers. The use of a 
dynamic ray tracing system allows in the determination of 
the paraxial amplitudes. 
 
In this work we use all the features of the complex 
paraxial wavefield in a 2D homogeneous media in order 
to generate synthetic body wave seismograms composed 
of multi arrivals or a superposition of GB’s. Some 
sensitivities parameters of the method are discussed with 
respect to the classical ray theory. We pick amplitudes 
along some GB’s and ray synthetic seismograms and 
compare the results with the ones generated by a FD 
scheme.  
 
Ray theory 
 
In a perfectly elastic, isotropic, inhomogeneous media, 
the ray theory can be derived by solving the 
elastodynamic equation using the ray series (Červenỳ 
and Ravindra, 1971). If we consider frequency ω a large 
parameter, the leading order term of the ray series (n = 0) 
is of practical interest. By considering only the principal 
component of the compressional seismic wave and 
introducing the zero order ansatz 
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where τ = τ(x) is the traveltime, we derive the eikonal 
equation 
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where α = α(x) is the PP wave velocity. The amplitude 
function satisfies the transport equation 
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where “•” means inner product. 
 
As can be seen, the solutions of (3) depend on the 
solutions of (2). Normally, this is not a easy task, and a 
better way of obtaining the solutions of (2) is using 
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2 
characteristics (Bleistein, 1986; Bleistein et al, 1987), 
leading to the ray equations, which are ordinary 
differential equations of first order that are handled 
numerically using a Runge-Kutta algorithm. In 3D media 
the ray tracing system is given by 
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Here σ is a parameter measured along the ray, commonly 
related to the traveltime τ and to the arc length s 
according to 
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v = v(xi) is the velocity of propagation of the 
corresponding type of wave, while xi are Cartesian 
coordinates of points of a ray and pi = ∂τ/∂xi are Cartesian 
components of the slowness vector.  
 
3D dynamic ray tracing 
 
In order to understand the dynamic ray tracing (DRT) 
system, we must introduce two coordinate systems: the 
ray coordinate system (RCS) and the ray centred 
coordinate system (RCCS). Figure 1 depicts the situation 
in both cases.  
 
In the RCS, given an initial curvilinear surface Σ, we 
select a ray Ω(γ1,γ2, γ3  = s) passing through it, where 
coordinates γ1, γ2 are specified along the surface and γ3 is 
considered along the ray, perpendicular to the initial 
surface. In the RCCS system, given an arbitrary ray Ω 
initiated at some point Sγ on the surface Σ, we fix some 
point along its arc length, say Rγ, and form a 2D 
orthogonal coordinate system, whose components are q1 
and q2, in a plane Σ⊥ perpendicular to the ray at q3 = s. In 
this way, a point R’ situated in the close vicinity of the ray 
and on the plane Σ⊥ has as position vector r(q1,q2,s) = 
r(0,0,s) + q1e1 + q2 e2, where e1 and e2 are basis vectors 
situated on the plane Σ⊥. The third basis vector e3 = t 
coincides with the slowness vector at Rγ. 
 
Using the RCCS system, we introduce the DRT system 
as 
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where Q, P and V are 2x2 matrices with components 
defined by 
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V = V(s) is a 2x2 matrix whose elements represent 
second mixed derivatives of the velocity field in ray 

centred coordinates and v = V(0,0,s) is the velocity along 
the ray. Mathematically, Q is a transformation matrix from 
ray coordinates to centred coordinates and P is a 
transformation matrix from the ray coordinates to 
slowness components ray coordinates. Physically, Q is 
referred to as the matrix of geometrical spreading, while P 
has a non obvious physical meaning. In this way we 
define a 2x2 matrix M of second derivatives of the 
traveltime field with respect to the ray centred coordinates 
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which is equivalent to writing M(s) = PQ-1, evaluated 
along the ray. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gaussian beam theory 
 
By definition, Gaussian beams (GB’s) are the high-
frequency asymptotic time-harmonic solutions of 
elastodynamics equations concentrated close to their rays 
(Klimeš, 1984). It is most naturally written in orthogonal 
ray-centred coordinates, where the polarization of the 
beams does not change along this coordinate system.  
 
Let us consider only PP waves and take in consideration 
an arbitrary ray Ω. In the close vicinity of such a ray, we 
construct an approximate solution of the elastodynamic 
equation that fulfills the following conditions: 1) the 
solution is concentrated close to the central ray and its 
amplitudes decrease exponentially with the increasing 
distance from the central ray; and 2) it should have no 
singularities along the ray. If the two previous conditions 
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Figura 1 – Ray coordinates (top) and ray centred 
coordinates (bottom). 
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are satisfied and we use the solutions of the DRT system 
previously discussed, the complex-valued vector 
amplitude is given by  
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where Λ0 is an initial amplitude factor. Equation (9) is the 
approximate solution of the elastodynamic equation in the 
vicinity of the central ray and is commonly known as 
Gaussian beam, where t(s) is the tangent unit vector 
along the ray. When dealing with GB’s, some conditions 
must be fulfilled by (9). The first is Im(M) > 0, which 
garantees the concentrations of all rays around the 
central ray. Once this first condition is obeyed, the second 
condition states that det(Q(s)) ≠ 0, which means that the 
wavefield described by GB’s are regular even in singular 
regions, no matter how complex the medium may be. 
 
Gaussian beam superposition integral 
 
Following the features studied in the former sections, we 
determine the elementary wavefield Ui(R,ω) observed on 
a fixed receiver R, here described in the frequency 
domain. If zero order ray theory is used, rays need to be 
traced using a velocity model in a specified medium, and 
its paths and traveltimes are searched for each fixed 
source-receiver pair. This procedure is known as two 
point ray tracing and is time consuming (Červenỳ et al, 
1982b). If, on the other hand, paraxial wavefields are 
used, the same procedure can be executed without a ray 
Ω(γ1, γ2, s) ever hitting the observation point R. Here γ1 
and γ2 are any ray parameters used to describe the 
central ray, e.g, take-off angles. Instead, the wavefield is 
calculated by a weighted paraxial superposition of rays 
connected with a central ray in the vicinity of the 
observation point R. This avoids two point ray tracing. In 
this way, the wavefield is obtained by a superposition 
integral, in the frequency domain, given by (Červenỳ, 
2000) 
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where Ui

(x)(R,ω) is the Cartesian component of the 
displacement vector at receiver R, D denotes the region 
of ray parameters in consideration and Φ(γ1,γ2) is a 
weighting factor that is determined asymptotically. Klimeš 
(1984) determines Φ using a geometrical interpretation, 
based on the expansion of the wavefield given on an 
initial surface. His result is similar to the one found 
asymptotically by Červenỳ (2000). We consider that the 
point Rγ belongs to the same ray as point Sγ, where the 
ray began, close enough to a fixed point R. Finally, 
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i  represents the GB’s connected 
to the central ray Ω, where T(R,Rγ) is the paraxial 
traveltime at R due to the traveltime of a ray at Rγ.  

In (10) the amplitude factor can be decomposed in two 
components: 
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and 
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The factor (12), called the spreading free amplitude, is 
constituted by terms related to the ray itself (density, 
phase velocities at initial and end points of the ray, 
normalized transmission/reflection coefficient factors 
along the ray, polarization vectors, etc), and a spreading 
dependent factor (11), which embodies the geometrical 
spreading factor and phase shifts due to caustics and due 
to some other factors, e.g., phase shift due to the source 
(Červenỳ, 2000).  
 
In the construction of synthetic seismograms in this paper 
we have used equation (10), reduced to the 2D case 
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where φmin and φmax are the angular (zenital) opening 
(since the ray parameter chosen to describe the rays are 
the take-off angles derived from a explosive point source) 
and Φ(φ) is the weighting function related to the initial 
conditions at the source. In a 2D homogeneous media, 
this function is given by (Červenỳ, 2000; Klimeš, 1984; 
Popov, 1996) 
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where function l(s) = (s - s0), with s and s0 being the final 
and initial arclength along the ray, respectively, and v(s) = 
v0.  
 
We have chosen to compute integral (13) in the time 
domain. By Fourier transforming (13) only for positive 
values of frequency and interchanging the order of 
integration, (13) becomes the wave packet approach 
(Červenỳ, 1983; Beydoun and Keho, 1987) 
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where “*” means convolution, f(t) is the source function 
and “Im” means the “imaginary part of”. As can be 
noticed, (15) has an non-oscillatory form and a single 
kernel to be evaluated. Together with definition (13) and 
with the use of a causal Gabor wavelet, equation (15) 
leads to the use of an analytical signal.  
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Figure 3 – Top: Gaussian beam (wave packet)
seismogram. Total number of wave packets used
N = 200. Bottom: Zero order ray theory
seismogram.  

Some comments must be made with respect to some 
factors appearing in (15). The paraxial traveltime T(R,Rφ) 
is calculated using general Cartesian coordinates for a 2D 
case (Klimeš, 1984) 
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(I, J, K, L = 1, 2) where xI are the observations points 
coordinates and Ix~ are the coordinates of the termination 
points of the central rays. The components of matrix H 
represent cosine directors when transforming from the ray 
centred coordinates to general Cartesian coordinates.  
 
Examples 
 
The complex paraxial wavefield superposition was tested 
in a 2D homogeneous medium restricted to the in-plane 
xz. A geological model composed of a layer over a half 
space is considered, where a horizontal reflector is 
imersed in an constant velocity overburden. The 
dimensions considered are: horizontal length of 2.0 km 
and a total depth of 2.0 km. A plane refletor is located at 
depth 1.0 km. Only P wave velocities are considered: 2.0 
km/s and 3.5 km/s, above and bellow the reflector, 
respectively. This contrast in velocity was chosen in such 
a way that a critical angle of reflection may occur at 350, 
giving rise to a critical region inside the model. A group of 
80 receivers are located on the surface, on the right side 
of the coordinate system origin. The distance between 
each receiver is 25 m. Figure 2 shows a sketch of the 
geological model together with its ray diagram. We have 
chosen as acquisition geometry a common shot gather.  
 
Figure 3 depicts a comparison between the resulting 
seismograms using zero order ray theory and equation 
(15), respectively. We notice that due to the critical 
reflection angle, the reflection coefficient becomes 
imaginary and the waveform observed around x = 1400 m 
in Figure 3 (bottom) exhibits a 90° phase change. When 
the GB superposition is used (Figure 3, top), the same 
behavior is smoothed in the critical observation point. The 
dominant frequency used in both cases was 5 Hz and the 
GB seismogram was obtained using 200 wave packets. In 
this respect, we have made extensive tests with different 
number of packets, as well as with varying frequencies, 
and decided that the present number of packets was 
sufficient to describe the wavefield adequately, using the 
frequency mentioned above. This is an inherent 
characteristic of the GB approach, as Červenỳ (1983) 
showed using a similar model like the one depicted in 
Figure 2, and depends on how “high” is the dominant 
frequency for the model in consideration. Also, since the 
beam half width is frequency dependent, it is reasonable 
to expect a direct relationship between the number of 
packets used in the construction of synthetic 
seismograms and the dominant frequency, in order to 
calculate the amplitudes for each receiver accurately.  
 
In Figure 4 we depict the FD seismogram with a reflection 
event at P1 (red arrow). This FD seismogram was 
obtained with a grid spacing of ∆x = 25 m and time 

sampling of ∆t = 1 ms, for a dominant frequency of 5 Hz. 
We have made use of the FD program FDSKALAR 
(Sandmeier & Liebhardt, 1992) for generating the 
synthetic seismogram.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 - 2D sketch of geological model and ray
diagram in a common shot geometry. A critical angle
occurs at approximately 350. 
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In Figure 5 we have picked amplitudes along both ray and 
GB’s sections and compared the results with the ones 
derived from a finite difference modeling scheme. In the 
comparisons, we have maintained the previous 
parameters and fixed the number N = 200 of packets and 
dominant frequency of 5 Hz to be analysed. The analysis 
is of importance due to the behaviour of amplitudes in the 
critical region. While the ray theory (green diamonds) 
predicts a smooth decrease in amplitudes followed by a 
sudden peak around the critical point, the GB theory (red 
circles) predicts a smooth and continuous increase, 
whereas FD theory (blue crosses) behaves with the same 
tendency but with some discontinuities (outliers) along the 
whole section. In this manner, GB seems to fit better with 
respect to FD than ray theory.  
 
Conclusions 
 
We have tested the use of paraxial Gaussian beams in 
order to obtain synthetic body wave seismograms in a 2D 
media composed of one layer over a half space, in a 

homogeneous velocity overburden. The velocity contrast 
was chosen in such a way as to yield a critical angle of 
reflection of 35°, for a critical observation point located at 
x = 1400 m. Our results showed that while the ray theory 
synthetic seismogram showed a 90° phase change in the 
critical observation point, the GB seismogram smoothed 
the amplitudes around the same point. Several tests with 
a varying number of rays, as well as varying frequencies, 
showed that a dense fan of rays must be used in order to 
get seismograms with sufficient accuracy. A frequency of 
5 Hz was used when the comparison of both ray theory 
and GB approach was extended to the amplitudes 
derived from a modeling scheme using finite differences. 
The GB picked amplitudes showed a smooth and 
continuous increase, following the tendency of the FD 
scheme, while the ray theory picked amplitudes presents 
a smooth decrease followed by a sudden peak around the 
critical point.  
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