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Summary

Two years ago a generalized 2-D zero-offset (ZO)
Common-Reflection-Surface (CRS) stack formula was pre-
sented by Chira et al. (2001). This traveltime equation en-
ables to stack seismic data, considering the average dip
and curvature of the measurement surface within the stack-
ing aperture and the near-surface velocity gradient at the
emergence point of the respective ZO ray. Nevertheless,
the CRS stack procedure has remained purely data-driven,
i.e., independent of the a priori unknown macro velocity
model. Besides the average dip and curvature of the mea-
surement surface, only the near-surface velocity and its
gradient in the vicinity of the considered coincident source
and receiver points are required. As in case of a planar
measurement surface, three wavefield attributes are de-
termined that provide important informations about the in-
vestigated subsurface structure. These can be applied in
a number of kinematic and dynamic modeling, inversion,
and stacking problems. In this abstract, a modified formu-
lation of this 2-D CRS traveltime formula is presented. The
new formula is better suited for the practical application, be-
cause the previously used local coordinate system of every
considered ZO location is substituted by a global coordi-
nate system. By this means, time consuming transforma-
tions of the input data can be avoided and an extension of
the existing 2-D ZO CRS stack software, designed for pla-
nar measurement surfaces, only, is simplified. In addition,
a redatuming procedure is presented that relates the ob-
tained results to a virtual planar measurement surface with
constant near-surface velocity. This step is very important
to simplify subsequent interpretation and further process-
ing, because otherwise the resulting stack and attribute
sections would be strongly influenced by the top-surface
topography and its potentially inhomogeneous top-layer.

Introduction

As is generally known, the goal of stacking is to reduce the
amount of data and to enhance its signal-to-noise ratio by
summing up correlated events in the multi-coverage data.
As result, a well interpretable time domain image of the
subsurface is achieved and important attributes like, e.g.,
the normal moveout (NMO) velocity are determined. To-
day, various kinds of stacking operators are in use. In gen-
eral, a 2-D ZO stacking operator, as discussed in this ab-
stract, describes a surface or curve in the midpoint-offset-

traveltime space that approximates an actual reflection re-
sponse measured in the vicinity of the emergence point
of the considered ZO ray. This ray is associated with a
technically not applicable experiment where source and
receiver are coincident. The summation result along the
ZO stacking operator is assigned to the respective point
in the zero-offset plane of the midpoint-offset-traveltime
data volume. Doing this for all points of this so-called
ZO section yields the stacked ZO section, which is very
valuable for interpretation due to its specific geometry and
high signal-to-noise ratio. Well-known conventional ZO
stacking methods are the common-midpoint (CMP) stack
and the normal-moveout/dip-moveout (NMO/DMO) stack
process. Within the last years, the Common-Reflection-
Surface (CRS) stack has been established as a promising
alternative to the seismic reflection imaging methods used
so far. Originally designed to generate a 2-D ZO stack
section (Höcht, 1998; Müller, 1999; Mann, 2002), the CRS
stack was successfully extended to 3-D (Höcht, 2002) and
for finite-offset (FO) (Zhang et al., 2001; Bergler, 2001).
Conventional stacking methods, like, e.g., the CMP stack,
are based on very simple velocity-model assumptions and
use one-parametric traveltime formulas that are applied to
common-midpoint data only. The CRS stack makes use of
the full multi-coverage seismic-reflection data and provides
additional traveltime parameters. These parameters are
very useful for the extraction of further attributes of the seis-
mic medium or to obtain a subsurface-velocity model (Du-
veneck, 2003). Another important feature of the CRS stack
method is that the a priori unknown macro-velocity model
is not required. For this reason, this method belongs to the
macro-model independent methods, which also include the
Polystack method (de Bazelaire, 1988; de Bazelaire and
Viallix, 1994) and the Multifocusing method (Gelchinsky
et al., 1997). For a detailed discussion of various aspects
of macro-model independent reflection imaging methods, I
refer to Hubral (1999).

Practical experiences have shown that these new meth-
ods are particularly successful for seismic land data. How-
ever, land data suffer in many cases from complex near-
surface conditions like laterally changing near-surface ve-
locities and undulating topography. That is why the exist-
ing CRS method was generalized to handle such situations
(Chira et al., 2001). Until then, all discussions and deriva-
tions in this regard had involved a planar measurement sur-
face, even though the assumption of a planar measurement
surface is, by no means, a requirement for the validity of
the surface-to-surface propagator matrix formalism (Bort-
feld, 1989), which is the basis of the derivation of the CRS
traveltime formulas. Finally, it has to be mentioned that an
extension of the Multifocusing method, designed to include
the topographic features of the measurement surface, has
also been proposed in Gurevich et al. (2001), and that an
alternative CRS stack approach, considering even rough
topography, was recently presented by Zhang et al. (2002).
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A general 2-D CRS stacking operator in global coordi-
nates

In order to approximate the reflection response of an un-
known reflector segment in depth, the CRS stack uses a
second order Taylor expansion of the traveltime moveout.
This traveltime moveout is related to the corresponding ZO
ray, defined by its coincident source and receiver location
X0(x0,z0) and its ZO traveltime t0. Consequently, every
point in the ZO section is related to one ZO ray, called the
central ray, and one CRS stacking operator.
If one introduces midpoint m and half-offset h coordinates
instead of the source and receiver locations xS and xG, ac-
cording to the relations

m =
xS + xG

2
and h =

xG− xS

2
, (1)

one obtains a parabolic traveltime formula that reads

tpar = t0 + σ1 m + σ2 m2 + σ3 h2 , (2)

where σ1,σ2,σ3 are the Taylor expansion coefficients.
Squaring this equation and retaining only the terms up to
the second order in m and h leads to the corresponding
hyperbolic representation

t2
hyp = (t0 + σ1 m)2 + 2t0(σ2 m2 + σ3 h2) . (3)

It has to be mentioned that xS, xG, m, and h are 1D coor-
dinates, measured along the tangent to the measurement
surface in X0, in a local coordinate system with its origin in
X0. For the sake of simplicity, only the hyperbolic formula
is considered in the following, as it is more successful in
practice (see, e.g., Höcht, 1998; Müller, 1999).

Using paraxial ray theory, Chira et al. substituted the three
Taylor coefficients by physical properties of the measure-
ment surface and its subsurface. All used properties are
related to the considered central ray and can be measured
in X0 and its vicinity. The derivation requires the following
assumptions:

1. Within the stacking aperture, the measurement sur-
face is representable by a parabola with origin in X0.

2. There are only first order near-surface velocity varia-
tions.

The obtained traveltime equation reads

t2
hyp =

(
t0 + 2

sinβ0

v0
m

)2

+
2 t0
v0

(
KN cos2 β0−K0 cosβ0− v0 E0

)
m2

+
2 t0
v0

(
KNIP cos2 β0−K0 cosβ0− v0 E0

)
h2 ,

(4)

with

E0 =− sinβ0

v2
0

[
(1 + cos2 β0)(∂xv)0 + cosβ0 sinβ0 (∂zv)0

]
. (5)

Here, (∂x0
v)0 and (∂z0

v)0 denote the 2D in-plane compo-
nents of the medium-velocity gradient (∇v) at X0. The
searched for wavefield attributes are β0, i.e., the emer-
gence angle of the central ray (see Figure (2)), and KN ,
KNIP, two wavefront curvatures related to hypothetical ex-
periments firstly introduced by Hubral (1983). The parame-
ters v0, the near-surface velocity, and K0, the surface curva-
ture, are assumed to be known a priori. The inhomogeneity
factor E0 depends, besides v0 and β0, on the near-surface
velocity gradient (∇v)0 which is also assumed to be a priori
known.

As mentioned before, this traveltime formula assumes a
local Cartesian coordinate system with its x-axis tangent
to the measurement surface in X0. This is the coordinate
system where, according to Equation (1), half-offset h and
midpoint m are defined. However, for the practical appli-
cation, it is very inconvenient to transfer the globally mea-
sured (e.g., by GPS) source and receiver coordinates into
the specific local coordinate system of every X0 location
that is to be considered. To solve this problem, I have used
a coordinate transformation that transfers the different local
coordinate systems to one global coordinate system with
its x-axis parallel to the horizontal and its z-axis parallel to
the depth direction. According to Figure (1) this transfor-
mation reads

h =
1

cosα0
hg and m =

1
cosα0

(mg− x0) , (6)

where mg, hg are the new offset and midpoint coordinates
measured in the global coordinate system, x0 is the global
x-coordinate of point X0, and α0 is the dip of the local coor-
dinate system in X0 with respect to the horizontal.

If one applies this coordinate transformation to Equation
(4), one gets a new traveltime equation which depends now
explicitly on the dip angle α0 of the measurement surface
in X0:

t2
hyp =

(
t0 + 2

sinβ0

v0 cosα0
(mg− x0)

)2

+
2 t0

v0 cos2 α0

(
KN cos2 β0−K0 cosβ0− v0 E0

)
(mg− x0)2

+
2 t0

v0 cos2 α0

(
KNIP cos2 β0−K0 cosβ0− v0 E0

)
h2

g .

(7)

Please note that no additional parameter was introduced,
as the surface dip is implicitly included in Equation (4), too.

To transpose the velocity gradient from local to global co-
ordinates one has to perform a rotation of the coordinate
system by the dip-angle α0, which leads to the relation

(∇v)0 =

(
cosα0 sinα0
−sinα0 cosα0

)
(∇v)g

0. (8)

Inserting this relation into Equation (5), one obtains the in-
homogeneity factor E0 in global coordinates:

E0 =− sinβ0

v2
0

[
(1 + cos2 β0)

(
cosα0

(
∂v
∂xg

)

0
+ sinα0

(
∂v
∂ zg

)

0

)

+ cosβ0 sinβ0

(
−sinα0

(
∂v
∂xg

)

0
+ cosα0

(
∂v
∂ zg

)

0

)]
.

(9)
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Figure 1: The transformation of the local 1D midpoint and
half-offset coordinates h and m to the respective global 1D
coordinates hg and mg.

Redatuming

As mentioned before, the final goal of the CRS stack is to
provide a stacked ZO section and different wavefield at-
tribute sections, which are the β0 section, the KN section,
the KNIP section, and the vNMO section. It is evident that
these sections should not depend on the characteristics of
the measurement surface and of the potentially inhomo-
geneous top-layer. If the acquisition topography and the
near-surface medium meet the required conditions, then
Equations (4) and (7) are valid to determine the surface
and near-surface medium independent wavefield attributes
KN and KNIP. However, the obtained values of the NMO ve-
locity are strongly influenced by the measurement surface
and its top-layer and the take-off angle β0 is still defined in
the local coordinate system. In addition, all traces of the ob-
tained sections are related to a floating datum. According
to Figure (2), β0 can easily be transferred to the surface-
dip independent take-off angle β g

0
, which is measured with

respect to the vertical. This transformation reads

β g
0 = β0 + α0 . (10)

Also, the NMO velocity values should be corrected to those
values that would be obtained on a horizontal measure-
ment surface without near-surface velocity gradient. In the
global coordinate system, the following definition holds for
the NMO velocity:

t2
hyp(hg,mg− x0 = 0) = t2

0 +
4h2

g

v2
NMO

, with (11a)

(vg
NMO

)2 =
2v0 cos2 α0

t0
(
KNIP cos2 β0−K0 cosβ0− v0 E0

) . (11b)

Similarly, on a fictitious planar and horizontal measurement
surface through X0 with E0 = 0, the obtained NMO velocity
(in global as well as in local coordinates) reads

v2
NMO,H =

2v0

t0KNIP cos2 β g
0

. (12)

cen
tral ray

Figure 2: The relationship between the take-off angles of
the normal ray, β0 and β g

0
, and the dip angle α0 for a curved

measurement surface. Note that β0 is measured in the lo-
cal and β g

0
in the global coordinate system. The angles

are defined in the mathematical positive direction of rota-
tion (counterclockwise). Consequently, β0 has a negative
value in the figure above.
Please note: For this figure the origin of the global coordi-
nate system is chosen to coincide with X0, which is also the
origin of the local coordinate system. Of course, this is, in
general, not the case.

Thus, one can solve Equation (12) for KNIP and insert the
result into Equation (11b) to obtain the relationship be-
tween the measured NMO velocity and its corresponding
value vNMO,H that would be measured on a fictitious hori-
zontal surface through X0 without near-surface velocity gra-
dient. Doing this results in the relation

v2
NMO,H =

2(vg
NMO

)2v0
cos2 β0
cos2 β g

0

(vg
NMO

)2(K0 cosβ0t0 + v0E0t0)+ 2v0 cos2 α0
. (13)

Applying these transformations leads to attribute sections,
which represent those values of the respective attribute
that refer to a fictitious horizontal measurement surface
without near-surface velocity gradient. However, it has to
be taken into account that, in general, the elevation of these
fictitious reference surfaces is different for different central
points X0 = (x0,z0). This means for the attribute sections
Si(x0,t0) and also for the ZO section SZO(x0,t0) that, in gen-
eral, every x0 is related to a different elevation z0. The con-
sequence is that, e.g., in case of a measurement surface
with sinusoidal shape and a subsurface constituted of ho-
mogeneous layers separated by horizontal reflectors, one
would find sinusoidal images of the reflectors in the ZO sec-
tion. The same observation would hold for the attribute sec-
tions. To remove this undesired topography effect from the
ZO section and the attribute sections, I introduce a fictitious
horizontal measurement surface to which all attributes and
traveltimes are related. In other words, a situation is sim-
ulated in which all central rays start and end at the same
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Figure 3: To remove the influence of the acquisition surface
topography from the obtained ZO and attribute sections,
a situation is simulated where all central rays end on the
same horizontal measurement surface, called common-
datum surface. Here, this is shown for one central ray. In
order to keep the figure simple, only the situation (∇v)0 = 0
is displayed, were refraction at the measurement surface
does not have to be considered, as one can choose v f = v0.

horizonal measurement surface. Thus, one has to transfer
the zero-offset traveltimes and also the attributes to those
values, which would be measured on this common-datum
surface. Such a procedure is called redatuming. In the fol-
lowing, all values that pertain to this virtual measurement
surface are denoted with a prime. The key information for
this procedure is the knowledge of the take-off angle β0,
which is provided by the CRS stack. If the common-datum
surface is assumed to be above the actual topography, it is
possible to choose an arbitrary velocity v f for the fictitious
layer between the topography and the new datum. If the
near-surface velocity gradient is zero, then the most con-
venient choice is to set v f equal v0, because this avoids
that the real measurement surface has to be considered as
an additional reflector. For (∇v)0 6= 0 Snell’s Law has to be
considered to derive β ′0, the fictitious take-off angle at the
fictitious coincident source and receiver point X ′0. Knowing
the take-off angles and the wave velocity within the ficti-
tious layer, it is not difficult to forward propagate the N- and
NIP-wave fronts upwards to the common-datum surface.

Mapping of X0 and t0 to the common-datum surface

To map the coincident source and receiver point X0 of a
central ray from the original measurement surface to its
corresponding location X ′0 at the common-datum surface,
one has to transform its coordinates x0 and z0 to their new
values x′0 and z′0. Of course, z′0 is given by the elevation of
the common-datum surface. To transfer x0 one has to know
the emergence angle of the central ray after being refracted
at the measurement surface. I will denote this angle as β f

0
.

Here, the well-known Snell’s Law reads

v0
v f

=
sinβ0
sinβ f

, (14)

and solving for β f
0

leads to

β f
0

= arcsin

( v f

v0
sinβ0

)
. (15)

In analogy to Equation (10), the take-off angle measured at
the common-datum surface β ′0 is given by

β ′0 = β f
0 + α0 . (16)

Denoting the vertical distance between X0 and the
common-datum surface as ∆z, simple trigonometric con-
siderations lead to the relation between x0 and x′0

x′0 = x0 + ∆z tan β ′0 . (17)

Similarly, one obtains for the new two-way traveltime of the
central ray

t ′0 = t0 +
2∆z

v f cosβ ′0
. (18)

To avoid very long equations I have abstained here and
in the following from substituting the primed values by un-
primed ones using previously derived Equations.

Mapping of KN and KNIP to the common-datum surface
In order to transfer the values of the wavefield attributes
KN and KNIP to those values which would be measured at
the common-datum surface, one has to use the refraction
law (see, e.g., Hubral and Krey, 1980) that gives us the
curvature of the N- and NIP-wave, respectively, after pass-
ing the measurement surface. This leads to the following
equation(s):

K f
N,NIP =

KN,NIPv f cos2 β0

v0 cos2 β f
0

+
K0

cos2 β f
0

( v f

vo
cosβ0− cosβ f

0

)
,

(19)
where K f

N,NIP
are the refracted wavefront curvatures of the

N- and NIP-wave, respectively, on the upper side of the
measurement surface. Finally, one applies the transmis-
sion law (see, e.g., Hubral and Krey, 1980) to propagate
the wavefronts of the N- and NIP-wave through the ficti-
tious layer above the real measurement surface upwards to
the common-datum surface. The resulting wavefront curva-
tures K′N and K′NIP measured at the common-datum surface
are

1
K′N,NIP

=

(
1

K f
N,NIP

+
1
2

v f t f

)
, (20)

with the two-way traveltime within the fictitious layer given
by

t f = t ′0− t0 =
2∆z

v f cosβ ′0
. (21)

Mapping of vNMO to the common-datum surface
According to Equation (11b), the NMO velocity obtained on
a fictitious, planar (K0= 0), and horizontal (α0= 0) measure-
ment surface through X0 with constant near-surface veloc-
ity (E0= 0) is given by Equation (12). Consequently, the
NMO velocity as it would be measured at the common-
datum surface is given by

v′NMO =

√
2v f

t ′0K′NIP cos2 β ′0
. (22)
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Conclusions

Within the last years the 2-D ZO CRS stack, assuming a
planar measurement surface and a constant near-surface
velocity, was applied in many cases with great success.
However, in any case where these conditions were not met,
coarse static corrections have been unavoidable. In this
abstract I have reviewed and extended a new approach,
that is able to consider both, the local dip and curvature
of the measurement surface and the near-surface veloc-
ity gradient. Even though there may also be cases, where
the conditions demanded by this more general approach
were not fulfilled, the required static corrections are much
smaller. From the implementational point of view, the pre-
sented formulation of the CRS stacking operator in global
coordinates provides a considerable simplification. By this
means, 90% of the existing 2-D ZO CRS stack code can
be reused in an efficient and convenient way. The compu-
tational cost of this more general approach is more or less
the same as for the conventional 2-D ZO CRS stack, as the
search for the wavefield attributes, which is the most time
consuming part, remains the same. The three wavefield at-
tributes, which are determined as a byproduct of the CRS
stack procedure, are the basis of the powerful redatuming
formalism presented in this abstract. The importance of
this additional step is evident in view of further processing
and final interpretation. Nevertheless, redatuming is only
one of the various valuable applications of the CRS wave-
field attributes.
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