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Abstract

Interpolation of seismic traveltimes plays an important
role for many applications. However, interpolation
schemes based on a local approximation of the tra-
veltime functions fail in the presence of later arrivals
and triplications of the wavefronts. In this paper we
suggest a method to locate triplications and correctly
interpolate first and later-arrival traveltimes using a
hyperbolic traveltime expression.

Introduction

Multi-arrival traveltimes are important for a variety
of applications, e.g., for migration. Due to the high
demands in computational storage it is common to apply
traveltime interpolation onto the fine migration grid. An
efficient and accurate interpolation method can lead to
a significant reduction of computer storage. However,
interpolation schemes based on a local approximation
of the wavefronts fail in caustic regions, as shown in our
examples below (Figures 8–10, top).

Except for the regions surrounding the discontinuities
in the wavefronts the errors of the interpolation are very
small. The high errors near the discontinuities are caused
by the fact that local interpolation schemes usually ap-
proximate the wavefronts with smooth functions. There-
fore, they fail in the vicinity of discontinuous wavefronts.

Method

The hyperbolic traveltime formula. The method is
based on the hyperbolic traveltime expansion described
in Vanelle and Gajewski (2002), which is based on a
Taylor expansion of the squared traveltime, T2, near a
receiver at ~g0. It leads to

T2(~g) = (T0 +~q ∆~g)2 + T0 ∆~g
>G ∆~g , (1)

introducing the slowness vector ~q and the second-order
derivative matrix G,

~q = ~∇T and Gij =
∂2T

∂gi ∂gj

.

If the coefficients T0, ~q, G are known for a position ~g0,
they can be used to interpolate traveltimes in the vicinity
of ~g0 using Equation (1). Let traveltimes be given on
coarse grids. These can be used to determine the coeffi-
cients of (1) and then carry out traveltime interpolation
onto a finer grid.

The coefficients of a variant of the hyperbolic equation
including source terms (Vanelle and Gajewski, 2002) can
also be used to compute weight functions for amplitude-
preserving migration (Gajewski and Vanelle, 2002).

Determination of the coefficients. Consider the
traveltime T0 from a source at the position ~s0 to a
receiver at ~g0 as expansion point and the traveltimes T1

and T2 which lie on the coarse grid positions adjoining
~g0 at ~g0 ± ∆gx:

∆gx

T0T1 T2

~s0

~g0

Figure 1: Traveltimes T0, T1, T2 on the coarse grid
with spacing ∆gx.

The traveltimes T1 and T2 are substituted into the hy-
perbolic expression (1):

T2
1 = (T0 − qx ∆gx)

2 + T0 Gxx ∆g2
x

T2
2 = (T0 + qx ∆gx)

2 + T0 Gxx ∆g2
x

This resulting system of equations is solved for the two
unknowns qx and Gxx:

qx =
T2

2 − T2
1

4 T0 ∆gx

and Gxx =
T2

2 + T2
1 − 2 T2

0

2 T0 ∆g2
x

−
q2

x

T0

The coefficients qz and Gzz are determined accordingly
from traveltimes to ~g0 ± ∆gz and so forth.

Traveltime interpolation. With all coefficients of (1)
determined, the interpolation onto the fine grid can be
carried out (Figure 2):

Figure 2: Interpolation of traveltimes onto the fine grid.
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Later-arrival traveltime interpolation

The high accuracy and efficiency of the hyperbolic in-
terpolation method was in detail investigated by Vanelle
and Gajewski (2002). Examples including complex 3D
models and interpolation of the source position can also
be found there.

Discontinuities in first arrival traveltimes. Equa-
tion (1) requires continuity of first- and second-order
traveltime derivatives. This is apparently not fulfilled
for first arrivals in the vicinity of a triplicated wavefront.
Therefore the determination of the coefficients, and
thus the traveltime interpolation fails (Figure 3).
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Figure 3: Traveltime curve (blue) and hyperbolic
approximation (red). Coefficients computed from
traveltime values at both sides of a discontinuity lead
to a misfit between g3 −∆gx/2 and g4 +∆gx/2.

The coefficients at both coarse grid points that frame the
discontinuity, and therefore the interpolated traveltimes
in the region surrounding them are affected.

The problems in caustic regions are not restricted to the
hyperbolic expression but occur with every interpolation
scheme based on a local approximation. To correctly
deal with these regions, the traveltime branches left and
right of the discontinuity need to be treated individually,
e.g. by extrapolation from unaffected coefficients, as
Figure 4 demonstrates.
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Figure 4: The coefficients at grid points g3 and g4 are
wrong. Better fitting traveltimes can be obtained by
extrapolation from g2 and g5.

In conclusion, to obtain better traveltimes in the vicinity
of a discontinuity, we must

• locate the position of the discontinuity (denoted by
P, see Figure 7),

• extrapolate traveltimes onto the fine grid from both
sides until P using the nearest unaffected coeffi-
cients.

Discontinuities and multi-arrival traveltimes. If
multi-arrival traveltimes are available, they can be in-

terpolated individually with a set of coefficients at each
coarse grid point for each arrival. However, we encounter
a similar problem as for the use of first-arrival traveltimes
only: near a triplication of the wavefront we need to de-
cide on the appropriate combination of first- and second-
arrival traveltimes for the computation of the coefficients
(Figure 5). This combination depends on the position
of the discontinuity.
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T
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Figure 5: First-, second-, and third-arrival traveltimes.
The correct coefficients, here for the first (red) and sec-
ond (green) arrivals at g4, can be obtained from com-
bining the appropriate traveltimes as shown.

Here the strategy to correct the traveltimes is to

• locate the position of the discontinuity,

• correct the coefficients,

• interpolate the left and right branches separately for
first and second arrivals.

Locating discontinuities. A discontinuity leads to a
negative value of the coefficient Gxx for the first-arrival
traveltimes at the two coarse grid points which frame it
(Figure 4). To detect a discontinuity we search for grid
points where Gxx is significantly more negative than in
their surroundings. We then extrapolate the traveltimes
from the next unaffected grid points on the left and right
towards the discontinuity and solve for the intersection
point P, as shown in Fiure 6. The coefficients Gzz are
investigated accordingly.
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Figure 6: The coefficients at grid points g3 and g4 are
wrong. Traveltimes are extrapolated from g2 and g5.
They intersect at P, the location of the discontinuity.

Examples

Detection of discontinuities. In this first example
we demonstrate the detection of discontinuities in the
first-arrival traveltimes. Traveltimes were generated on
a coarse grid with 100 m spacing using the wavefront
oriented ray tracing technique (Coman and Gajewski,
2001) for a model with a low velocity lens. The
discontinuities were detected as described above, by
first selecting coarse grid points with negative Gxx

followed by extrapolation from uncontaminated grid
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points and solving for P, the location of the discontinu-
ity. Figure 7 demonstrates the reliability of the detection.

.
Detection of discontinuities
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Figure 7: Detection of discontinuities: isochrones and
the detected locations P on the fine grid. The mismatch
between the real and detected position near z=0 is a
border effect.

Extrapolation of first-arrivals. In this example we
have used first arrival traveltimes only. The coefficients
were determined and the traveltimes interpolated onto
a fine 10 m grid. In regions with discontinuous wave-
fronts, the discontinuities were detected and traveltimes
were extrapolated from uncontaminated grid points.
The resulting relative errors are shown in Figure 8.
Whereas the mean error for the traveltimes from the
original hyperbolic interpolation without considering
the discontinuities is 0.113 %, the error was reduced
to 0.014 % by the extrapolation in the affected region.
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Figure 8:Interpolation of first-arrival traveltimes. Top:
only hyperbolic interpolation was carried out. In the
bottom the traveltimes in the region surrounding the
discontinuity were corrected by extrapolation from
unaffected grid points.

This technique of traveltime extrapolation can also
be applied in combination with multi-arrivals, e.g., in
regions where a caustic begins to form and later arrivals
are not yet available for all of those coarse grid positions
where they are needed for the determination of the
coefficients.

Interpolation of multi-arrivals. This example shows
how the accuracy of the interpolation of first and second
arrivals is enhanced by our technique. Third and later
arrivals can be treated accordingly. Hyperbolic travel-
time interpolation was carried out using the uncorrected
coefficients for first and second arrivals. The resulting
relative errors are shown in the top part of Figure 9
for the first arrivals, and Figure 10 for the second arrivals.

Then the discontinuities were detected and the coeffi-
cients were corrected for both first and second arrivals.
Traveltimes were interpolated onto the fine grid using
the appropriate coefficients for each fine grid point.
The results are shown in Figures 9 and 10 (bottom).
For the first arrivals the mean error was reduced to
0.014 %, as in the case of extrapolation. For the second
arrivals the mean error was reduced from 0.249 % in
the uncorrected version to 0.006 %.

As already indicated, we can combine the extrapolation
technique with the interpolation using corrected coeffi-
cients in regions where the triplications form.
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Figure 9: Interpolation of first-arrival traveltimes. Top:
without accounting for discontinuities, bottom: with
corrected coefficients using first and second-arrivals tra-
veltimes.
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Later-arrival traveltime interpolation
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Figure 10: Interpolation of second-arrival traveltimes.
Top: without accounting for discontinuities, bottom:
with corrected coefficients.

Conclusions and outlook

We have introduced a method to detect caustics and
regions with discontinuous wavefronts. With this infor-
mation we can correctly handle the traveltime branches
and thus overcome the problems related to local tra-
veltime approximations in the vicinity of discontinuous
wavefronts.

We have shown in a simple example that the errors
can be reduced by a magnitude by application of our
technique. Investigations carried out by Dettmer (2002)
show that the method performs equally well in 3D. In
this case, however, we must take care to distinguish
between line foci and point foci (Figure 11).
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Figure 11: First-arrival wavefronts forming a line focus
(left) and a point focus (right). The blue circles indicate
the locations of the discontinuities.

We are currently working on an implementation that
also considers discontinuities for the interpolation of the
source position (Vanelle and Gajewski, 2002). Since the
coefficients involved in the corresponding expression can
be used to compute geometrical spreading from travel-
times (Vanelle and Gajewski, 2003), this extension will
also lead to more accurate geometrical spreading in re-
gions with discontinuous wavefronts.

The geometrical spreading is a key ingredient to com-
pute true-amplitude migration weight functions. Here,
later arrivals are crucial for the imaging of complex
structures (Geoltrain and Brac, 1993). Pending further
investigation this will make the method particularly
suited for an application within the traveltime-based
strategy for amplitude-preserving migration (Gajewski
and Vanelle, 2002).
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