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Abstract 

Over the years several orientation estimation techniques 
have been developed either as variants of some early 
methods or as part of particular attribute computations or 
applications. Designed with specific properties in mind, 
they usually yield different results for complex signals like 
seismic data. Most known methods generally require 
relatively high computational effort. Additionally, all 
methods are sensitive to noise, so additional pre-filtering 
of the data is usually required, increasing the 
computational cost. This paper proposes an orientation 
estimation method based on the autocovariance function 
of the data. The proposed approach results in robust and 
geologically meaningful orientation estimates throughout 
a seismic dataset. By estimating the orientation from a 
smoothed version of the autocovariance of the data (not 
the data itself!), I show that it is possible to achieve better 
results with considerable less computational effort. 

 

Introduction 

Classical image processing filters are designed for very 
simple images where only homogeneous regions are 
considered. However, in many real-world images, regions 
are not homogeneous but contain a texture, which can be 
defined as a form of ordered structure. We are interested 
in textures which present a pattern of ordered lines, or 
oriented textures. Examples of textures of this type are 
images of certain types of wood, fingerprints, rocks, and 
seismic data in general. Textures of this class are 
characterised by their orientation, scale, anisotropy, and 
curvature. Analyses of such textures usually involve some 
sort of orientation estimation technique in order to identify 
different domains in an image. 

Besides texture analysis, orientation estimation also plays 
an important role in image processing applications, like 
adaptive filtering and image enhancement. In geophysics, 
despite some initial investigations (Dalley et al., 1989), 
only recently the orientation itself (in the form of dip and 
azimuth) became of interest not only for structural 
interpretation (Marfurt et al., 1998; Steeghs et al., 1998) 
but also to perform adaptive filtering (Bakker et al., 1999; 
Hocker and Fehmers, 2002), pattern classification and 
recognition (Randen et al., 2000), and to compute other 
seismic attributes (Van Spaendonck et al., 2001), among 
others.  

Unfortunately, there is no strict mathematical 
interpretation of the notion of “orientation”. Currently, for 
seismic images, “orientation” can be determined either 
from the correlation structure of the signal (Marfurt et al., 
1998), angular distribution of signal power spectrum 
(Steeghs et al., 1998), or by analysing the joint statistics 
of the gradient vectors (Randen et al., 2000). Since the 
first two methods are very expensive computationally, I 
shall here concentrate on the orientation estimation from 
gradient vectors. The vast majority of existing orientation 
estimation techniques belongs to this class. 

The development of the initial concepts of orientation 
estimation (Granlund and Knutsson, 1995; Kass and 
Witkin, 1987) by different fields of applied science has 
resulted in a myriad of apparently different (but basically 
closely related) techniques. Nearly all established 
techniques are based on the same criterion which leads 
to an eigensystem problem. Due to a lack of formalism 
and rigorous referencing, it is difficult to identify genuinely 
new approaches in the literature. For instance, one such 
technique, the structure tensor, can be performed by 
several different methods (e.g. the gradient structure 
tensor, the quadrature tensor, the polynomial tensor, 
etc.). All of them can be shown to have the same 
fundamentals and give the “correct” orientation when 
applied to a simple signal. However, only the gradient 
structure tensor and the polynomial tensor are rotationally 
invariant (meaning that a rotation of the signal results in 
corresponding rotation of the tensors), while the 
quadrature tensor is the only one to show phase 
invariance (meaning that the norm of the orientation 
tensor does not depend on the signal phase). Those 
particular properties can have a significant impact on the 
results when complex signals, like seismic data, are 
considered. A theoretical analysis of such tensor variants 
for relatively complex signals is given by (Johansson and 
Farnebäck, 2002). To add to the confusion, some of the 
formulations are known by different names in different 
fields of science. For instance, the gradient structure 
tensor is also known as the moment tensor or inertia 
tensor. It has also been used in the geophysical literature 
without proper reference or credits, as in (Randen et al., 
2000). 

The present paper presents a brief review of the current 
orientation estimation methods based on the structure 
tensor and then proposes an alternative method based on 
the autocovariance of the data. Only plane-like linear 
structures are considered; curvilinear structures like 
channels are outside the scope of this paper. Additionally, 
only techniques that estimate a single dominant 
orientation are considered. Structures with conflicting 
dominant orientations, like stratigraphic terminations or 
truncations, require a different theory. 
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Basic concepts 

A linear structure in the N-D space is shift invariant in at 
least one orientation, but not in all orientations. Therefore, 
a plane-like feature in 3-D can be defined as shift 
invariant along two orientations. A local vicinity with ideal 
orientation can be defined by (Granlund and Knutsson, 
1995) 

( ) ( . )s x f x n=
� � �

, 

with f being a scalar function of a scalar argument and n
�

 
the unit vector perpendicular to the lines of constant grey 
values. However, in real images textures are almost 
never oriented locally in such an ideal way. Besides the 
intrinsic stochastic variation in local orientation, real 
signals are always corrupted by various types of noise or 
non-stationary perturbations (Figure 1). Another problem 
with such representation is that it does not indicate a 
method for estimating the orientation axis and its level of 
confidence. In a seminal paper (Knutsson, 1989) found a 
tensor mapping, which is suitable for further processing, 
defined by 

T

≡ xx
�

x
. 

The major advantage of the tensor mapping is that it is 
independent of the dimension of the image. This 
representation was expanded by (Haglund, 1992) as  

T

n

� �
� �≡
� �
� �

xx
�

x
,                                  (1) 

with ( )  indicating some sort of local averaging. Equation 
(1) is also known as the structure tensor. The 
computation of the structure tensor involves estimation of 
the orientation for each point in the image followed by the 
tensor mapping and averaging. The normalization factor 
determines how the averaging step is weighted with 
respect to the local intensity contrast. Various 
implementations of the structure tensor can be found in 
the literature, the earliest being (Haglund, 1992; Kass and 
Witkin, 1987; Rao and Schunck, 1991). 

 

P

n

P

n

 
Figure 1 – Local orientation axis n at point P of a 2-D 
seismic image. Notice the variance in orientation caused 
by stochastic geometry variation and noise along the 
seismic reflector. 

Gradient Structure Tensor (GST) 

The GST is defined by 

Tgg� ≡ ,                                  (2) 

which is equivalent to equation (1) with n=0, meaning that 
the elements of the GST can be interpreted as gradient 
energies. 

The GST is an efficient implementation of the structure 
tensor. It also consists of two steps: 

1. Estimate the gradient g I= ∇  of the image I at a 

given scale σg. This is accomplished by 
convolving the image with the first order 
derivative of a Gaussian ( , )gG x σ  according to  

{ }( ) ( , ), 1, ,i g
i

g I x G x i N
x

σ∂= ⊗ ∈
∂

� , where N 

is the dimension of the image; 

2. Map the gradient to the structure tensor using 
the dyadic product equation (2) and average the 
tensor components at a given scale σT (usually 
three times the gradient scale). 

In the 3-D case the structure tensor (or covariance matrix) 
T of g takes the form 
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In practice, the expectation operator E{ } is replaced by a 
windowed local estimate, typically a low-pass filter. The 
orientation is represented by the axis n

�

, which is on 
average perpendicular to the lines of constant grey values 
(seismic amplitudes). The GST leads to an optimisation 
problem that must be solved for each point P in the image 

(Figure 1). It can be demonstrated (Jahne, 1997) that n
�

 

is equivalent to the eigenvector of max
T

n n →T
� �

 
corresponding to the largest eigenvalue. 

The GST is a positive semi-definite tensor, meaning that 
all eigenvalues are real and positive. Additionally, the 
tensor is also symmetric, so only N(N+1)/2 elements have 
to be processed. In the 2-D and 3-D cases those 
eigenvalues can be found analytically. Higher dimensions 
require numerical solutions. The computation of the GST 
in the 3-D case requires six convolutions, two for the 
gradient components and four for the tensor averaging, 
for each point in the volume. 

Interpretation of the eigenvalues 

The degree of contrast between the computed 
eigenvalues defines the local structure model. Assuming 
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that the eigenvalues are sorted, i.e. λi > λi+1, four 
possibilities exist for 3-D images: 

 
λ1 λ2 λ3 Local structure 

0 0 0 Constant amplitude with no 
measurable structure 

>0 0 0 Plane-like linear structure 
>0 >0 0 Line-like linear structure 

>0 >0 >0 Non-linear structure. If λ1 = λ2 = λ3 
the structure is isotropic 

 
In practice, the eigenvalues should be checked against a 
threshold level. Since we are interested in plane-like 
structures (i.e. λ1 > λ2 ≈ λ3), it is possible to define a 
contrast independent confidence measure for this model 
as 

1 2

1 2

C
λ λ
λ λ

−
=

+
, 

which takes values between 0 (non-planar, i.e., isotropic 
or line-like) and 1 (totally planar). 

Some problems with the GST technique 

The most important aspect of the GST is the calculation 
of the joint distribution of gradients, the associated errors, 
and the perturbation they propagate to the subsequent 
tensor mapping. The computation of gradients of discrete 
signals constitutes a challenging problem in itself. The 
problem of optimisation of gradient filters has been 
extensively investigated in the literature (Bentum, 1996; 
Marschner and Lobb, 1994; Möller et al., 1998; Neumann 
et al., 2002), but there seems to exist no consensus on 
which metrics to use. Additionally, little is known about the 
influence of noise on the final optimisation. Since real 
data, and particularly seismic data, usually display 
moderate to high noise levels, the gradient estimation 
step must be preceded by a low-pass filtering procedure. 
In practice, the gradient and the low-pass filters are 
combined into a single operator, resulting in a longer 
operator. Longer operators suffer from precision problems 
near image borders, which usually results in less 
pronounced contrast in the eigenvectors of the tensor. 
Furthermore, longer operators require more machine 
operations, degrading the overall performance. For 
complex structures, like the ones commonly found in 
seismic data, a better approach is necessary in order to 
achieve higher accuracy in the estimated orientation. 

 

Orientation from the autocovariance of the data 

Instead of developing new gradient optimisation 
techniques, I propose a non-differential approach to the 
estimation of the eigenvalues based on the 
autocovariance of the data. The autocovariance function 
(ACF) φ of the signal ( )s x

�

 can be approximated in the 
origin of the coordinate system by a Taylor series as 
(Mester, 2000) 

�+−≈ xxx
T
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2
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with H being the Hessian of ( )ss xφ
�

at the origin as 
defined by 
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The elements of the Hessian H can be shown (Granlund 
and Knutsson, 1995) to be equal to 
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Comparison of these equations with equation (3) shows 
that tensor T can be computed directly from the 
autocorrelation function. In other words, the formation of 
tensor T can be reduced to the problem of estimating the 
curvature of the continuous ACF near the origin from a 
large but limited number of (interpolated) samples. This 
can be accomplished by estimating the curvature near the 
origin of an interpolating spline function. Thus, all 
elements necessary for the tensor mapping can be 
obtained without the troublesome computation of gradient 
filters and associated optimisation, resulting in great 
savings in computational effort. Another advantage of this 
approach is that it can use very small windows, thus it 
does not require the padding fringe which are necessary 
near image borders when gradient operators are used. 
Therefore, the costly GST scheme and the subsequent 
eigensystem computation can now be replaced by the 
following steps: 

1. Estimate the ACF in the vicinity of point P; 

2. Apply a low-pass filter (interpolating spline); 

3. Estimate the Hessian H at the origin; 

4. Compute the eigensystem and analyse the 
relationship between eigenvalues. 

Figure 2 illustrates the steps of the technique using a 
patch near point P of Figure 1. 
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(a)                       (b)                       (c) 

Figure 2 – Some of the steps of the method proposed in 
this paper: (a) a patch of the image in Figure 1 near point 
P; (b) autocovariance (reduced resolution) of (a); and (c) 
smoothed version of (b) near the centre of the image 
patch. 

 

Results 

Figure 3(a) shows a seismic section over a geologic fold. 
Dips along the fold vary approximately between 0 and 30 
degrees in a smooth way. Figures 3(b) and 3(d) show the 
results obtained using the GST. Notice the border 
problem evident on the left border of the image. Figures 
3(c) and 3(e) show the results obtained with the method 
proposed in this paper. Notice the much smoother dips 
obtained and the more consistent and smoother 
eigenvalues. The method proposed here took 30% less 
computing time than the GST considering only 2-D 
computations. Whilst a highly optimised GST code was 
used, no attempts were made at optimising the 
autocovariance code. Notice that for the 3-D case the 
gain in performance is expected to be even greater. 

 

Discussion 

I have demonstrated a method for the estimation of local 
seismic orientation which is both robust to noise and 
computationally efficient. This method avoids explicit 
computation and optimisation of gradients associated with 
the standard techniques based on the structure tensor. 
Additionally, this approach offers further possibilities for 
considering the amount of noise present in the image (in 
the Wiener sense) and to compute more robust statistical 
measures of the estimated orientation. 
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(a) 

       
(b)                                         (c) 

       
(d)                                         (e) 

Figure 3 - A section of a seismic line (a), the computed 
orientation (b), and largest eigenvalue (d) computed using 
the GST. Results using the method proposed here are 
shown in (c) and (e), respectively. 
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