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Abstract  
 
We investigate the estimation of fractures orientation, 
strike and dip, through multiazimuthal AVO analysis of qP 
and its converted waves.  We assume weak impedance 
contrast, weak anisotropy and that the fractured medium 
behaves as an effective transversally isotropic (TI) 
medium. Under these assumptions fractures orientation is 
reduced to the estimation of the axis of symmetry of the 
TI medium from qP reflectivity data. Linearized 
approximations of qP reflectivity are used for inversion. 
SVD analysis and numerical simulations show that qP, 
qS1 and qS2 are required to produce stable estimates of 
fractures orientation. Although the inversion produces 
unstable results for some contrasts of elastic parameters 
the subset of parameters necessary to recover the TI 
symmetry axis can be recovered stably from AVO/AVD 
data. 

Introduction 
 
Most hydrocarbon reservoirs occur in fractured 
formations. In this case, fractures mainly control the 
reservoir permeability.  Since wave propagation in 
fractured media might be modeled through an effective 
anisotropic medium (Hudson, 1982, Schoenberg and 
Sayers, 1995), the characterization of the reservoir elastic 
anisotropy from seismic data may help optimizing oil 
recovery. Previous works report fractures characterization 
from AVO/AVD data. Rüger and Tsvankin (1995, 1997) 
show how to estimate vertical fractures strike and fluid 
content information from qP reflection coefficients data. 
Pérez et al. (1999) use shear wave splitting and P wave 
reflection data to determine the strike of a vertical set of 
fractures. Beretta et al. (2002) use diffraction tomography 
to estimate the fractures density also for vertically 
fractured medium. We formulate the problem of fractures 
characterization using the reflections coefficients of a qP 
incident wave, including converted waves. The incidence 
medium is isotropic and we assume weak impedance 
contrast and weak anisotropy. Linearized expressions for 
qP reflectivity (RqPqP, RqS1qP, RqS2qP) (Gomes et al., 2001) 
are used for inversion.  The fractured media is considered 
as an effective TI medium. The problem of determining 
fractures orientation is posed as the estimation of the axis 
of symmetry of this medium from qP reflectivity. 
The linearized qP reflectivity across an interface 
separating two weak impedance contrast and weak 
anisotropic media was presented by Gomes et al. (2001). 
The two anisotropic media are considered as small 

perturbations around an isotropic homogeneous 
background. Along the sagital plane the expressions are: 
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Where θ is the incidence angle; κ=β/α is the ratio 
between S-wave and P-wave velocities in the 
background, ρ is the background density; ∆ρ is the 
average density contrast across the interface and ∆Cij is 
the average elastic parameters contrast between the two 
media; θκ−=θ 22sin1)(

)(Kcos)( θ+θ
K ,  

and 
θθ+θκ=θω cos)(Ksin)( 2

κ=θη . Equations (1) was presented 
previously by Vavryčuk & Pšenčík (1998) and (2) and (3) 
where also derived in Jílek (2002) in a somewhat different 
form. In order to derive the expression above, the 
polarization directions in the background media were 
chosen to be the SV and SH direction, which makes them 
more suitable when the medium of incidence has 
azimuthal symmetry. We assume that the medium of 
incidence is isotropic and coincides with the background 
media used for linearization. In this case, 

, where C indicates the transmission 
medium elastic tensor and C  is the background elastic 
tensor. 

2/)( 0
ij

T
ij CC −ijC∆ = T

ij

0
ij

Estimation of Fractures Orientation 
 
In order to estimate the fractures orientation we make the 
following assumptions: 
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1- The fractured medium behaves as an effective TI 
medium with its axis of symmetry perpendicular to the 
plane of fractures. 
2- The incidence medium is isotropic. 
Under these assumptions, our goal is to estimate the 
orientation of the symmetry axis from the elastic 
parameters estimated from inversion. If the axis of 
symmetry is not aligned with one of the coordinate axis 
the plane of symmetry containing the axis forms an angle 
Ψ with the x2 (Figure 1). This angle can be determined 
from the relation:  
 

1122

2616

CC
)CC(22tan

−
+=Ψ                             (4) 

 
Unfortunately four angles have the same tangent Ψ, 
Ψ+π/2, Ψ-π/2, Ψ+π.  Rotating the elastic parameters 
estimated by the negative of one of these angles aligns 
the symmetry plane containing the tilted axis along the x1 
or x2 axis.  We can always choose the rotation, which 
align the symmetry plane containing the tilted axis along 
x2 axis and use the expression below to determine the dip 
angle Θ 
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Under our assumptions, dip angle can be estimated from 
the inversion results except by the same ambiguity as 
before, i.e., Θ or Θ+π/2. This ambiguity can be resolved 
rotating the parameter by the negative of Θ and observing 
the differences C11-C22 and C33-C22. If the first difference 
is zero the axis of symmetry is aligned along x3 and the 
dip angle is Θ+π/2 otherwise C33-C22 is zero and the axis 
is aligned along x2 and the dip angle is Θ. It is always 
possible to perform this rotation, all the combination of 
elastic parameters required to perform this rotation are 
estimated from inversion. 
If the axis of symmetry coincides with one of the 
coordinate axis the algorithm fails. In this case orientation 
can be determined using the alternatives: 
 
a) If C22=C33 and C44 ≠C55 the axis is along x1; 
b) If C11=C33 and C44 ≠C55 the axis is along x2;                       (6) 
c) If C11=C22 and C44 =C55 the axis is along x3. 
 
The next step investigates if this algorithm is stable. 
Using the equation (1)-(3) the inversion problem is 
reduced to the solution of a linear system 

 
r=A (C0, Ψ, Θ) p,                                               (7) 

 
Where r is the vector containing the observations (RqPqP, 
RqS1qp, RqS2qP), p is the vector containing the density and 
elastic parameters contrasts and the matrix A (C0, Ψ, Θ) 
depends only on the background medium and the 
direction of the incident P wave. SVD analysis of A shows 
that it is required at least six azimuths equally spaced, 300 
interval, and incident angles greater then 150 to produce 
stable estimates. Multiazimuthal walkway experiments 
(Leaney et al., 1999) might provide this kind of data. 
The vector p is organized as bellow: 
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The resolution and stability of the inversion was evaluated 
using SVD and numerical simulations. For the simulations 
several synthetic data sets were computed using the 
exact expressions for the reflection coefficients. Each 
synthetic data set was contaminated by Gaussian noise 
using 100 random seeds to initialize the random number 
generator. These data were inverted and the mean and 
standard deviations of the parameters used to evaluate 
stability 

Examples 
 
The orientation the axis symmetry was estimated the of 
inversion from (1), (2) and (3) joins for two models. The 
synthetic data set was generated solving the Zoeppritz 
equations (Gomes, 1999). The azimuth range is from 00 
to 3600 with 150 intervals and the incidence angle varies 
from 00 to 300 with 10 intervals. This data set was 
contaminated with different level Gaussian random noise 
of amplitude of 5% to 20% of the mean absolute value of 
the observations. The 100 data sets, each with a different 
noise contamination, were inverted. Both models have 
weak contrast ∆ρ/ρ, ∆α/α, ∆β/β are smaller than 0.1 and 
weak anisotropy.  
In the first model the top medium is an isotropic ρ = 2.65g/ 
cm3 α = 4.00km/s e β = 2.31km/s. The bottom medium is 
TI with horizontal axis and its density is ρ = 2.5g/ cm3 and 
its elastic tensor is: 
 



























=

82.8 
00.0
00.0
00.0
00.0
00.0

49.6 
00.0
00.0
00.0
00.0

49.6 
00.049.22 
00.034.326.31
00.034.361.1326.31

Cij
(9)  

 
In this model (4) and (5) fails because the symmetry axis 
of the bottom medium coincides with the coordinate axis 
x1. We must use (6) in order to estimate the orientation of 
the symmetry axis. The numerical simulations results for 
this model with 10% noise level are in Table 1, which 
presents the average of the estimates of p1 to p8 and the 
ratio of the standard deviation of the estimation over its 
average value.  The difference between C22 and C33 is 
smaller than the difference between these parameter and 
C11. Noticing also the difference between C44 and p8 C55, 
we conclude the medium is TI with horizontal axis. The 
results are same for 20% noise level. 
In the second model the top medium is isotropic ρ = 
2.60g/cm3, α = 4.600km/s and β = 2.810km/s. The bottom 
medium is a sandstone, its elastic tensor is TI with vertical 
axis and its Thomsen parameters (Thomsen, 1986) are ρ 
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= 2.50g/cm3, α = 4.476km/s and β = 2.841km/s, ε = 
0.097, δ = 0.091, γ = 0.051. This medium was rotated of 
600 anticlockwise around x3 axis and after that rotated of 
300 clockwise around the new x2 axis (see Figure 1). 
Figures 2-4 present the stereogram of the exact synthetic 
data for each wave type. Figures 5-7 present the 
corresponding stereogram computed from the mean of 
the parameters estimated from 100 numerical 
simulations. The symmetry of the RPP stereogram 
indicates its insensitivity to the dip of fractures. However, 
the SVD shows that RPP data is required to estimate the 
fractures dip. The estimated models fit the data with 
maximum residual of the order of 10-3 for every data set. 
The SVD analysis and the standard deviation of the 
parameters in the numerical simulation show that 
although parameters C14, C15, C16, C24, C25, C26, C36, C45, 
C46, C56 present instability, but the estimative of the 
symmetry axis orientation is stable. The results of the 
numerical simulations for this model for several noise 
levels are presented in Table 2, which presents the 
average of the estimates of the symmetry axis azimuth 
and dip and the ratio of the standard deviation of the 
estimation over their average value. 

Results 

 
Several tests were performed with models with weak 
impedance contrast and weak anisotropy and also with 
models that violated some of these assumptions. Also 
different azimuth rages and incidence angles were used. 
From these test we drew the following: 
 
1- RqPqP, RqS1qP and RqS2qP are required to recover the 
orientation from multiazimuthal AVO data only. 
 
2-The minimum azimuth interval to recover stable 
estimates of orientations is Ψ = 300. 
 
3- The minimum incidence angle range is Θ = 300. 
 
4- Though the estimates of elastic parameters contrasts 
vary during the simulations, the estimates of the 
orientation angles are reliable for moderate noise levels 
(<10%). 
 
5- The estimates of fractures strike is more sensitive to 
noise than the fractures dip. 
 
6- The estimates are accurate only for models with weak 
impedance contrast and weak anisotropy. 

Conclusions 
 
We presented an algorithm to estimate fractures 
orientation form multiazimuthal AVO analysis. In order to 
estimate the fractures orientation AVO data only we need 
RPP, RqS1qP and RqS2qP data. Though the assumption of an 
effective TI behavior for fractures is restrictive, its validity 
can be checked from the symmetries of the elastic tensor 
derived from the parameters inverted. For a weak 
anisotropic medium and weak impedance contrast, the 
estimates of fractures orientation are unique, except for a 

900 rotation of the dip angle and, stable for moderate 
noise levels.  
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 Tabel 1 - Exact value, estimated value and standard deviation to elastic parameters. The noise level is 10%. 
 

 
Elastc parameter Extac value  Estimated Value Standard Deviation 

C11 31.10 31.93 0.65% 
C12+2C66 35.13 35.60 0.5% 
C13+2C55 35.13 34.55 0.74% 

C22 40.43 40.73 0.54% 
C23+2C44 40.41 39.71 0.65% 

C33 40.43 39.90 0.07% 
C44 13.86 13.69 0.35% 

C55 12.38 12.17 0.39% 

 

 

 

Table 2 - Numerical simulation results for different noise levels. The ratio of the standard deviation of the estimates over the 
average value is also presented to indicate the stability. 

 
 
 
 
 

Noise Level Fract. Azimuth 
(Exact value Ψ = 600 ) 

Variation Fract. Dip 
(Exact value Θ = 300) 

Variation 

5% 59.530 ±50 25.500 ±20 
10% 59.950 ±100 25.350 ±4.30 
20% 41.170 >400 18.90 ±12.60 
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 Figure 1  - Coordinate axis. The angle Ψ is the azimuthal and the angle Θ is the incidence. 
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 Figure 2 – Stereogram for the exact RqPqP. Figure 5 – Stereogram for the RqPqP of the inverted 

model. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 Figure 3 - Stereogram for the RqS1qP of the inverted

model. 
Figure 6 – Stereogram for the exact RqS1qP.  

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 4 – Stereogram for the exact RqS2qP. Figure 7 – Stereogram for the RqS2qp of the inverted

model. 
 

 

Eighth International Congress of The Brazilian Geophysical Society 


	Abstract
	Introduction
	Estimation of Fractures Orientation
	Examples
	Conclusions
	Acknowledgments

