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Abstract   

   We present a new 2D gravity inversion approach for 
estimating the basement relief of a sedimentary basin. It 
consists in stabilizing the inversion by constraining just a 
small interval of the estimated relief instead of 
constraining the whole set of parameters describing the 
basin relief. The interpreter specifies the shape of a 
feature he believes to exist in the basement, and the 
method looks for a relief estimate closest to the specified 
feature and at the same time fitting the observed 
anomaly. Test with synthetic data showed that the 
method correctly identifies the location and size of the 
specified feature. Besides, an ambiguity region is 
automatically obtained as a by-product of the method 
implementation. This approach presents the advantage of 
allowing the introduction of different kinds of a priori 
information in the same inversion problem in contrast with 
traditional approaches which require that the same type of 
a priori information hold for the whole area. In addition, 
there is no theoretical limit for the complexity of the 
specified feature. 

Introduction 

   Gravity inversion of the basement relief of a 
sedimentary basin is a ill-posed problem requiring the 
introduction of a priori information to guarantee solution 
stability. Substantial effort has been directed to the 
formulation of well-posed interpretations by the 
incorporation of specific a priori information via Tikhonov’s 
regularization method (Tikhonov, 1977). The a priori 
information more commonly used so far is that the 
estimated basement relief be smooth. The degree of 
smoothness is established by the interpreter, and it must 
be above the minimum smoothness necessary to produce 
stable solutions (Pilkington and Crossley, 1986; Leão et 
al., 1996, Barbosa et al, 1997, for example). An extension 
of this approach establishes that the estimated basement 
relief be overall smooth, but may present local abrupt 
discontinuities (Barbosa et al., 1999). In this case, 
additional information about the maximum basin depth is 
also required to guarantee solution stability.  

   A strong limitation of the above methods is that a single 
kind of a priori information is introduced under the 
assumption that it holds for the whole area being 
interpreted. However, geological environments are too 
complex to be described by a single qualitative attribute, 
such as “smoothness”, “roughness”, or “discontinuities” 

holding over the whole study area. Therefore, the 
development of interpretation methods allowing the 
introduction of a priori information in a more flexible way 
would be most desirable. Specifically, the method should 
permit the interpreter to introduce whatever geometric 
information he has about local basement features, and 
not about the whole area. 

   We present a new gravity inversion method for 
estimating the basement relief of a sedimentary basin. 
The interpretation model consists of a set of vertical, 
juxtaposed prisms, whose thicknesses are the 
parameters to be determined. The user specifies the 
shape of any local feature he believes to exist in the 
basement such as an anticline, a syncline, a step fault or 
any combination of these structures. The method finds 
the x- and z-positions ( ox and oz ) of the structure and a 
scale factor (β) defining the feature size. This is 
accomplished by a systematic search, in the ox - oz - β 

space, for the point *
ox , *

oz , β∗  producing geophysical 

solutions which minimize the Euclidean norm Φ of the 
difference between the estimated relief and the relief 
specified by the interpreter. Only the relief information 
within the segment specified by the interpreter is used in 
the stabilization process, but the interpretation model is 
defined over the entire basin. As a result, the estimated 
relief outside the segment containing the a priori 
information is not stable.  The result is a 3D function Φ 
( ox , oz , β), whose minimizer *

ox , *
oz , β∗  estimates both 

the dimension (β∗ ) and the position ( *
ox , *

oz ) where the 
specified feature is expected to occur. 

   As a by-product of the method, ambiguity regions are 
obtained by plotting the hypersurface Φε ( ox , oz , β), 

where Φε is the value of the objective function Φ 
associated with an acceptable precision in estimating the 
basement relief. 
Method 

   Let B be the basement relief of a 2D sedimentary basin 
S presenting a constant and known density contrast ρ 
relative to the basement. We approximate S by the 
volume consisting of a set of M vertical, juxtaposed 2D 
prisms with density contrast ρ, so that the basement relief 
B is approximated by a broken line joining the central 
points of the bases of all adjacent prisms (Figure 1). We 
assume that the gravity anomaly over the basin is known 
at N points. Also assume that the interpreter wants to 
verify whether a given basement feature, defined by a 
polygon F (specified at an arbitrary position and with 
arbitrary dimension) (Figure 2), and whose geometry is 
obtained from a priori geological information, is consistent 
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with the available gravity data. To this end, a grid is 
defined on the x-z plane and the centroid C of F is made 
to coincide with each grid point (xo, zo). For each fixed 
point (xo, zo), the feature F is expanded or contracted by 
multiplying the line segments joining the centroid C with 
each vertex of F by a factor β>0, for a suit of pre-specified 
values of β. Then, for each point (xo, zo,β) the following 
inverse problem is solved:  

minimize   Φ  =
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where p ≡{ jp } is an M-dimensional vector of parameters 

defining the prisms thicknesses, o
ig  is the ith gravity 

observation, )(pig is the theoretical gravity anomaly at 
the ith position, produced by the set of M adjacent vertical 
prisms, δ is the rms of the noise realizations 
contaminating the observations, and o

jp are the depths to 
the specified feature F centered at (xo, zo). These depths 
are interpolated at the same x-coordinates of the center of 
the prisms defining the interpretation model. Note that, in 
general, the summation in equation (1) is not over all M 
prisms, but over a subset of M, defined by K-L+1 prisms 
(Figure 3). 

   The problem formulated in equations (1) and (2) is 
solved via Lagrange multipliers, by obtaining the 
unconstrained minimum of  

          ( ) ( )pp Φ+Ψ= µτ                                           (3), 

where µ is the inverse of the Lagrange multiplier. It is 

selected as the smallest positive value still producing 

stable solution. The solution stability is inferred by 

inverting theoretical anomalies corrupted with different 

pseudorandom noise sequences.  

   The proposed method may be described as a 
systematic mapping of the minima Φmin( ox , oz , β) in 

parameter space ox - oz - β, where Φmin is the minimum 
of Φ resulting from the minimization of τ given in equation 
(3). The basis of this space define the dimension (β) and 
the position ( ox , oz ) where the specified feature is 

expected to occur. The minimizer *
ox , *

oz , β∗   of 

Φmin( ox , oz , β) is the point where the solution is closest 

to the specified feature F and produces an anomaly 
consistent with the observations. In addition, mapping 
Φmin ( ox , oz , β) provides an appraisal of the confidence 
on each possible solution (if any), simply by inspecting 
the hypersurface ),,( βε

oomin zxΦ , where ε
minΦ  is the 

value of Φmin associated with an acceptable precision in 
estimating the basement relief. 

Example with synthetic data 

   Figure 4a shows the gravity anomaly produced by the 
basement relief of a homogeneous sedimentary basin 
presenting a density contrast of –0.3 g/cm3 relative to the 
basement (Figure 4b). The theoretical anomaly was 
corrupted with pseudorandom Gaussian noise with zero 
mean and standard deviation of 0.3 mGal.   We want to 
verify if and where feature F shown in Figure 5 may be 
considered a geophysical solution. If the centroid of F is 
centered at x=16 km and z=2 km, the feature will coincide 
with the central basement uplift shown in the central part 
of Figure 4b. To apply the proposed method, a grid of 15 
× 15 × 5 points along x , z , and β, respectively, was 
established. Figure 4b shows the grid nodes on plane x -
z . The grid nodes values assigned to β were 0.8, 0.9, 1, 
1.1, and 1.2.  

   The proposed method was applied to the anomaly of 
Figure 4a using a stabilizing parameter µ = 0.3 (the 
smallest value found to produce stable solutions). A set of 
62 vertical, juxtaposed prisms were used as interpretation 
model. The results are shown in Figure 6 where five 
slices of the function Φmin ( ox , oz , β) are shown, one 
slice for each value assigned to β. The region between 
the minimum value of  Φmin and  Φmin + 0.2 km is 
displayed in green. This region represents an ambiguity 
region within which the solution explains the observations 
and fits the feature F within an average precision of 200 
m. Reasonably well-defined minima occur on all slices 
about x=16 km and z=2 km, but the slice corresponding to 
the correct value (β =1) presents the more precise 
minimizer as indicated by the smallest ambiguity region 
(green region in Figure 6). 

   To confirm the above analysis, we show in Figure 7 the 
estimated solution (red), the true basement (blue), and 
the feature F (black), computed at ox =16 km, oz =2 km, 
and β =1. In the interval [12 km, 22 km], where the a priori 
information is constraining the estimated relief, it is very 
close to the true relief. Outside this interval, there is no a 
priori information constraining the estimated relief, so it is 
very unstable.  

   Figure 8 shows a similar plot for ox =16 km, oz =1 km, 
and β=0.8. Although the estimated relief is stable in the 
interval [ 12 km, 22 km], it is very far from the true relief 
and cannot  even be considered a geophysical solution 
because the observations are not fitted within the 
experimental errors. 
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Conclusions 

   We presented a new gravity inversion method for 
interpreting structural features of the basement of a 
sedimentary basin in a stable and operational way. The  
interpreter may introduce a priori information about any 
structural shape he knows (or believes) to exist on the 
basement surface. The method returns the structure   
location and factor scale compatible with the gravity data, 
and possible ambiguity regions.  

   The interpretation model used extends itself along the 
whole horizontal extent of the basin whereas the a priori 
information is introduced on just a restricted horizontal 
window. As a result, only part of the estimated basement 
relief is stabilized. This allows the incorporation of more 
complex a priori information because this information is 
not required to hold for the whole area.  

   A practical limitation of the presented method is that 
there is a loss of information at the top and at both 
horizontal borders equal to one half the respective 
maximum dimension prescribed for the feature being 
analyzed. In this way this method is more effective when 
applied to basins with large horizontal extent relative to 
the size of the specified feature. 

   The method can be easily adapted to take into account 
the increase of the sediment density with depth.   
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Fig. 1 – Gravity observations (above) produced by a
sedimentary basin S (below), which is approximated by
a set of juxtaposed vertical prisms with constant and
known density contrasts. The basement B is
approximated by a line joining the central points of the
bases of all adjacent prisms. 
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Fig. 5 -   Feature F  (blue) employed in the synthetic tests. 

1 L K M 

Fig. 3 – Grid (green dots) where the centroid of the
specified structure (pink) is positioned. The depths
to the structure (red dots) are interpolated at the
horizontal positions coinciding with the centers of
prisms L, L+1, … K .

z 

Fig. 4 -  Gravity anomaly (a) produced by the basement relief (b) with a density contrast of –0.3
g/cm3, and corrupted with pseudorandom Gaissian noise with zero mean and standard deviation
of 0.3 mGal. Dots in (b) represent the grid where the centroid of feature F will be positioned. 
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Fig. 2 – Feature F specified by the interpreter at an 
arbitrary position and with arbitrary dimension. 
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Fig. 6 – Function  Φmin ( ox , oz , β) for five different values of β. 

 

0  3 6 9 

km 

 

 
 

 

 



Customized a priori information 

 

Eighth International Congress of The Brazilian Geophysical Society 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

- 30

- 20

- 10

0

x (km) 

0 

2 

4 

0 5 10 15 20 25 300 5 10 15 20 25 30

z 
(k

m
)

G
ra

vi
ty

 a
no

m
al

y 
(m

G
al

)  

0 5 10 15 20 25 300 5 10 15 20 25 30

(a) 

(b) 

- 30

- 20

- 10

0 

x (km) 

0

2

4

0 5 10 15 20 25 30

0 5 10 15 20 25 30
- 30

- 20

- 10

0 

x (km) 

0

2

4

0 5 10 15 20 25 300 5 10 15 20 25 30

0 5 10 15 20 25 300 5 10 15 20 25 30

z 
(k

m
)

G
ra

vi
ty

 a
no

m
al

y 
(m

G
al

)  

Fig. 7 -  (a) Observed (dots) and fitted (solid red line) gravity anomalies. (b) True (blue) and fitted
(red) reliefs produced when the centroid of feature F (solid black line in b) is centered at ox =16

km and oz =2 km and assuming β=1. 

Fig. 8 -  (a) Observed (dots) and fitted (solid red line) gravity anomalies. (b) True (blue) and fitted 
(red) reliefs produced when the centroid of feature F (solid black line in b) is centered at ox =16 

km and oz =1 km and assuming β=0.8 


