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Abstract 

Geophysical electromagnetic data are usually analyzed 
using forward and inverse modeling techniques. For the 
forward modeling the finite element method has been 
used successfully due its facility to handle geological 
structures with arbitrary shapes. The inverse modeling is 
usually done with constrained Marquardt algorithm. 

The purpose of this paper is to show the potentialities of 
the finite element method in electromagnetic tomography 
forward problem using complex geological models with 
azimuthal symmetry. Equality constrains in the inverse 
problem have greatly improved the recovered image. 
Three factors are analyzed: the resolution of recovered 
image as a function of frequency, the effect of contrasts 
between the anomalous bodies and the homogenous 
background and the response of models with complex 
geometries. All studied examples show excellent results. 

Introduction 

Recently electromagnetic (EM) tomography has received 
special attention from geophysical community. Indeed, 
applications of this tool have been used in development 
and characterization of petroleum reservoirs. Even though 
images with high-resolution have been previously 
produced by techniques of cross-well seismic 
tomography, EM tomography has brought additional 
geological information from reservoir, through analyzes of 
the distribution conductivity subsurface, such as: rock 
porosity, fluid saturation and fracture orientation. 
Although, some progress in EM tomography has already 
been accomplished, improvements still needed to be 
done in order to get better imaging resolution from the 
subsurface. 

The interpretative modeling of the EM tomography can be 
divided in two parts; the forward problem, where the EM 
data are computed by solution of the differential equation 
that governs the model, and a second part, called of the 
inverse problem, where the EM data are inverted through 
techniques of geophysical inversion in order to obtain the 
electrical conductivity distribution of model. Thus, 
improved techniques of modeling in forward problem or 
inversion methods bring news potentialities in EM 
tomography. 

Within the last years, important progress had been made 
in cross-well EM tomography. Nekut introduced ray-trace 
modeling (Nekut, 1994). Alumbaugh and Morrison have 

shown an iterative Born approach to EM tomography 
(Alumbaugh and Morrison, 1995). Newman (Newman, 
1995) formulated an inverse solution using integral and 
differential equations. 

This paper presents the potentialities of finite element 
method in forward modeling of EM tomography through of 
interpretative geological models with azimuthal symmetry. 
The inverse problem is solved by the Marquardt method, 
introducing equality constrains as priori information 
(Souza et al., 2001), following the formulation introduced 
by Medeiros and Silva (Medeiros and Silva, 1996). The 
models with azimuthal symmetry are adequate to 
represent plumes of gas or fluid that are injected in 
enhanced recovery process, principal area of application 
of cross-well techniques in oil industry. 

The versatility of the proposed method are illustrated in 
simple models introduced by Alumbaugh and Morrison 
(1995) and for additional sophisticated models whereas 
the complex geometries are explored. 

Forward problem 

The finite element method has been successfully applied 
in modeling of electrical and EM geophysical problems 
(Coggon, 1971), (Rijo, 1977) and (Pridmore et al., 1981). 
This method can be used to solve the differential 
equations with its boundary conditions associated, which 
describe the behavior of electrical and EM fields in 
subsurface. The main advantage of the method is the 
facility of incorporating complex geometries in 
interpretative models that represent the geological 
environment. Thereby, this method becomes a powerful 
tool to solve electromagnetic cross-well problems, where 
we are interested in high-resolution images of inter-well 
region containing distribution of physical proprieties with 
complicated geometries. 

The governed equation is the Helmholtz equation, 
applicable to cylindrical with azimuthally symmetric 
geometry about vertical magnetic dipole sources. This 
assumption reduces the 3D vector forward problem to a 
manageable 2D scalar form. Taking a cylindrical 
coordinate reference system (r, θ, z) with the z-axis 
pointing downward. Our models consist of cylindrical 
anomalous in an otherwise homogeneous background of 
electrical conductivity pσ . Vertical magnetic dipole 
sources are laid upon the symmetric axis that represents 
a well. One example of this geometry is the classical 
model introduced by Alumbaugh, (Alumbaugh and 
Morrison, 1995), as is shown in Figure 1. This represents 
two three-dimensional sectioned anomalous cylindrical 
targets embedded in a homogeneous medium. 

Because of cylindrical symmetry imposed upon the 
interpretative model and the kind of the sources used, the 
forward problem exhibits pure transverse electric (TE) 
mode, thus existing only the transversal electric field, θE . 
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Figure 1 – Cylindrical geometry for electromagnetic 
tomography. The anomalous bodies are cylindrically 
about the magnetic dipole sources. 

Following Ward and Hohmann (Nabighiam, M. N., Ed., 
1988), the transversal electric field can be decomposed 
as the sum of a primary field, due by homogeneous 
background, that has analytical solution, and in a 
secondary field due to the anomalous bodies around of 
the sources.  

Assuming a harmonic temporal dependence tie ω− , the 
differential equation resultant for the secondary 
transversal electric field has the form. 
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where σ=ŷ  is the admittivity, µωiz =ˆ  is the impedivity, 
ppyyy σσ −=−=∆ ˆˆˆ  is the difference between the 

admittivity of anomalous bodies and of the homogenous 
background. 

 
Figure 2 – Wells frame for electromagnetic tomography. 
The sources are located in well 1, whereas in well 2 are 
located the receivers. 

After we get to solve numerically the equation (1), the 
vertical components of magnetic fields zH  are computed 
in the receivers in another parallel well. This situation is 

illustrated in Figure 2, (Alumbaugh and Morrison, 1995). 
The relationship between the transversal electrical field 
and the vertical magnetic field has the form. 
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As the vertical component of magnetic field can be 
obtained by numerical differentiation, the main effort in 
the forward modeling is to solve the equation (1) through 
of numerical techniques. 

Finite element formulation 

The finite element method is a numerical technique for 
obtaining approximate solutions to boundary value 
problem. It consist in discretize the domain of differential 
equation in fundamental elements, the finite elements, 
and approaches the solution to an interpolation of simple 
function, the basis functions. 

As we are working with a model that presents azimuthal 
symmetry, we can consider only a slice of the three-
dimensional region, hence the domain becomes bi-
dimensional. The Figure 3 illustrates a transversal section 
of the region limited by wells. It is divided in triangular 
elements with conductivity constant in each element. 
Because the homogenous Dirichlet boundary conditions 
have to be satisfied, the discretized region extends 
beyond of the area limited by the two wells, where the EM 
fields can be considered negligible at border of the 
domain. At the sources well Newman condition has to be 
used.  
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Figure 3 – Region discretized for the finite element 
formulation. The anomalous bodies are present in the 
area limited by wells. 



Victor Cezar T. de Souza and Luiz Rijo 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Eighth International Congress of The Brazilian Geophysical Society 

3

Inverse process 

The interpretative model takes fundamental role in the 
inverse process. Since the original 3-D model was 
reduced for a bi-dimensional model, Our interpretative 
model consists of an inter-well region discretized into 
cells. Each cell is formed by two triangular finite elements 
and inside each of then, the electrical conductivity is 
constant. The numerical values of electrical conductivity 
are the parameters to be estimated in the inverse 
process. The vertical magnetic fields measured at 
receivers compose the observed data. Using only an 
adjusting functional that expresses the relationship 
between this data and the parameters of the interpretative 
model results in an ill-posed inverse problem (Medeiros 
and Silva, 1996). Hence we should to add priori 
information in order to transform an ill-posed problem into 
a well-posed problem. 

In this work we add equality constrains about the 
electrical conductivity of background and about cells that 
surround the interpretative model. For the first guess in 
the inverse process, we use the conductivity of the 
uniform host. This approach has been applied to invert 
resistivity and electromagnetic data (Constable et al., 
1987; deGroot-Hedlin and Constable, 1990; Wang et al., 
1994). The equality constrain incorporated in the cells are 
absolute constrains, that is, each parameter is required to 
be as close as possible to a typical numerical values. 
These values can be obtained through rock analysis 
sample or by another geophysical method. 

Have handled the equality constrains described 
previously, we can add it into the inverse process through 
the Lagrange multipliers, in order to obtain a stabilized 
functional. Thus the resultant functional is minimized in 
least-square sense employing the iterative Marquardt 
algorithm. The estimated parameters are obtained when 
the current parameters produce data that fit with the 
observed data, unless the variance of noise presents in 
the data. This condition corresponds in a minimal point of 
stabilized functional. 

Results 

In this section we illustrate through recovered images of 
synthetic data the potentialities of the finite element 

method in EM tomography. We analyze the following 
aspects: frequency resolution, arrangement of the target 
(anomalous bodies), conductivity contrasts and mainly 
complex geometries. 

The first result illustrates the resolution as a function of 
frequency for the classical model introduced by 
Alumbaugh, (Alumbaugh and Morrison, 1995), as shows 
the Figure 4a. This is a model that allows measuring of 
the vertical resolution of the employed method, since we 
have two anomalous bodies arranged vertically 
embedded in a homogenous background. The model 
presents two 20 x 20 m conductive blocks of 0.02 S/m 
separated by 20 m in a 0.01 S/m whole space. Were used 
21 sources and 21 receivers spaced at 10 m intervals in 
the 200 m deep wells. The receivers well is distanced 100 
m from the well that contains the vertical dipole sources. 
In the inverse process the vertical magnetic fields 
measured at receivers compose the observed data. 

In order to simulate real data in the inverse process, the 
synthetic data were corrupted with pseudo-random 
Gaussian noise with zero mean and variance of 5% of the 
minimum total magnetic field. The inverse problem is 
stabilized adding the equality constrains described in the 
previous section. We assume to known the true value of 
the conductivity background unless a certain degree of 
uncertainty. This assumption it is not a strong priori-
information, since we can obtain it easily from well logging 
data. 

Figures 4b through 4f illustrate the recovered images from 
model showed in Figure 4a. We notice that the resolution 
of the recovered images improves with increasing of the 
frequency. Obviously there is a limit determined by the 
skin depth effect. We see that at 1 kHz there is no 
response to the targets at all, for 10 kHz, already is 
possible to distinguish the two anomalous, but the 
resolution is poor. At 100 kHz the targets bodies are well 
visible and finally at frequency of 300 kHz the recovered 
image presents high resolution, and hence approach it of 
the true model. 

 

 

 
                                  (a)                        (b)                         (c)                          (d)                         (f)               

Figure 4 - Results for two anomalous bodies vertically separated in four frequencies. (a) True model, - recovered image - at: 
(b) 1 kHz, (c) 10 kHz, (d) 100 kHz and (f) 300 kHz. 



Potentialities of the FEM in EM tomography 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Eighth International Congress of The Brazilian Geophysical Society 

4
The model exemplified previously is not adequate for 
analyzing horizontal resolution. A model that is better 
suited for describing the lateral resolution is shown in 
Figure 5a. In this case the two 0.02 s/m blocks are 
separated horizontally by 20 m in a 0.01 S/m background. 

Instead of make simulations in many frequencies, and 
analyzing the recovered images for a determined model, 
we choose to analyze the recovered images for a model 
containing three levels of conductivity contrasts. Thus we 
can analyze both the horizontal resolution and the effects 
of different degree of conductivity contrasts. The Figure 
5b illustrates the result at 100 kHz for the true model 
illustrated in Figure 5a. We notice the two targets are 
recovered with high resolution. 

 
                  (a)                                  (b)                   

Figure 5 - Results at 100 kHz for two anomalous bodies 
horizontally separated, where the conductivities are twice 
greater than of the homogeneous background, (a) true 
model (b) recovered image. 

In Figure 6a the conductivity of the targets are four times 
greater than the background. Using a frequency of 300 
kHz we obtain a recovered image that approaches to the 
true model, as is shown in Figure 6b. 

 
                  (a)                                  (b)                    

Figure 6 - Results at 300 kHz for two anomalous bodies 
horizontally separated, where the conductivities are four 
times greater than of the homogeneous background, (a) 
true model (b) recovered image. 

Using a frequency of 50 kHz for the true model illustrated 
In Figure 7a, where the conductivity of the targets are six 
times greater than the background. We obtain a 
recovered image with high resolution, as is shown in 
Figure 7b  

In fact, for the three cases we notice that there is not 
overlap between the anomalous bodies. This is a grateful 
characteristic of the responses produced by the finite 
element method, where different arrangements of the 
targets not influence the lateral resolution. 

 
                       (a)                                (b)                    

Figure 7 - Results at 50 kHz for two anomalous bodies 
horizontally separated, where the conductivities are six 
times greater than of the homogeneous background, (a) 
true model (b) recovered image. 

It was illustrated that the finite element method yielded to 
good recovered images for targets arranged vertically and 
horizontally. This fact leads to models that own complex 
geometries. For example, The Figure 8 illustrates four 
targets taking shape of the acronym SbgFSbgFSbgFSbgF. A slice of 
this model reveals targets with complicated geometries. 

 
Figure 8 – Three-dimensional representation of complex 
geometry. A section of anomalous bodies between the 
wells show us the acronym – SbgFSbgFSbgFSbgF. 
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                (a)                               (b)                                (c)                                 (d)                                (e)         

Figure 9 - Results for anomalous bodies with complex geometries four frequencies. (a) True model, - recovered image - at: 
(b) 1 kHz, (c) 10 kHz, (d) 100 kHz and (f) 300 kHz. 

 

The Figure 9a shows the 2D section of the three-
dimensional model illustrated in Figure 8. The Figures 9b 
through 9f display the results using four frequencies. At 1 
kHz it is not possible distinguish the targets; due to the 
low-resolution resultant, as illustrates the Figure 9b. 
Increasing the frequency to 10 kHz we notice which the 
anomalous take shapes in four bodies, but the details of 
the targets are not displayed, as is shown in Figure 9c. At 
100 kHz the details already are noticed, this improvement 
of the resolution is displayed in Figure 9d. If the frequency 
is increased for 300 kHz the recovered image approaches 
of the true model, as illustrates the Figure 9e. 

We showed that the recovered images present high 
resolution, when is used an appropriate frequency, 
however this accuracy can be counted through the error 
between the true and recovered models. 

The Figure 10 illustrates the relative errors for the 
recovered images showed in Figure 9. The Figures 10a 
through 10d display the presence of constrains around of 
image and how the relative error decreases gradually with 
increasing of the frequency and consequently of the 
resolution. 

 

 
                                        (a)                            (b)                            (c)                             (d)      

Figure 10 - Results for the relative errors of the recovered images illustrated in Figure 9, (a) at 1 kHz, (b) 10 kHz, (c) 100 kHz 
and (d) 300 kHz. 
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Conclusions 

We presented the potentialities of the finite element 
method in electromagnetic tomography analyzing three 
factors: the resolution of recovered image as a function of 
frequency, the effect of the contrasts between the targets 
and the homogenous background and last the response 
for model that explores complex geometries. 

The approach using the finite element method produces 
image with high resolution in higher frequencies. As it has 
been demonstrated in other approach methods 
introduced for EM tomography, such as Born and Rytov 
schemes. Although the rate of attenuation at these 
frequencies can cause serious problems of stability with 
respect the inverse problem, due to the magnitude of the 
data become very small. 

We illustrated through of several examples that for great 
contrasts between the conductivities of the targets and of 
the background, we got good inter-well images. This, 
because the finite element method doesn’t work with 
approaches the first or second order for the governed 
differential equation, thus we can handle diverse level of 
contrast directly, in contrast to the first order approaches 
usually used in Born and Rytov scheme. 

Finally, we should state that the main attractive of the 
method introduced in this paper, it is the facility in 
incorporate complicated geometries into interpretative 
model, it has been showed that the finite element method 
demonstrated high capacity of the resolution for targets 
that posses complex shapes. 
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