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Abstract

We discuss a low-order spectral element method that is ex-
plicit in time. This method is compared with the standard
finite-difference method for the acoustic wave equation in
two space dimensions. Although reduced integration is em-
ployed, the method is consistent in the sense that diagonal
and stiffness matrices are evaluated with the same integra-
tion rule, which is a tensor product of Simpson’s rule. To
ensure a diagonal mass matrix, the zeros of the weighting
functions are taken at the integration points.

Introduction

The finite-element method (FEM) is a numerical technique
suitable to problems involving complex geometries and ma-
terial properties. When applied to time-dependent prob-
lems, FEM usually leads to implicit schemes, which require
the solution of a linear system at each time step. How-
ever, explicit finite-difference methods (FDM) for the wave
equation are not severely limited by stability conditions, in
contrast to parabolic governing equations. Moreover, FEM
and FDM yield similar results. For these reasons (Kelly et
al, 1982) FDM is a natural choice for seismic modeling.

To reduce computer processing time and memory require-
ments, one may consider employing explicit FEM schemes,
which in turn depend on the structure of the mass matrix.
For instance, consider the following problem involving the
one-dimensional wave equation (with dots meaning differ-
entiation with respect to time):
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Multiply (1) by ��	�
, integrate with respect to �, integrating

the second term of the left-hand side by parts:
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Substituting � by �� in (3), we find
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Matrices� and� are called mass and stiffness matrices,
respectively. Let �� � �� � 
 
 
 � �� be a partition of ��� � � in
time steps of length � and �� � 	��	��
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. The
forward in time, second-order central-difference scheme
can be written as
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Note that equations (5) yield an explicit scheme only if the
mass matrix � is diagonal, that is, if the weighting func-
tions ��	�
� 
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 are orthogonal:
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Lex �� � �� � 
 
 
 � ���� be a partition of ��� �� in in-
tervals of length � � � and �� be standard interpolation
functions (i.e., �� are piecewise polynomial and ��	��
 � �
if � �� �). One can achieve (6) by computing � with inte-
gration points at �� , � � �� 
 
 
. This technique is known
as lumping, since it concentrates mass over the nodes.

A recent method (Komatitsch and Vilotte, 1998) employs
Gauss-Lobatto integration points (which are also used as
basis points of the weighting functions) to compute all en-
tries of (4). This approach renders orthogonal weighting
functions without resorting to selective integration.

The method of Komatitsch and Vilotte fits into the class of
spectral element methods, which employ high-order orthog-
onal polynomial weighting functions whose basis (or collo-
cation) points are the same as in the integration rule. These
methods represent the state of the art in finite elements for
seismic modeling (Carcione et al, 2002).

The goal of this note is to study the low-order version of this
method, which is described in the following section. One
test problem has an analytical solution, providing us with
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estimates of the stability condition and the convergence
rate. A second example simulates a common source (CS)
gather of a non-homogeneous 2D section.

Method

Let � � ��� and �� � �����. Consider the following initial
boundary-value problem:
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Problem (7) is a model for acoustic waves where � � �	�� �

can be associated with the compressional velocity �� �
		����
��
��� for � � � (Rivière and Wheeler, 2001; Pas-
sos, 2002).

Consider weighting functions ��	�� �
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 satis-
fying �� � � in ��. Proceeding as in (2)-(5), we find
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Let us partition � into non-overlapping quadrilaterals �	,
� � �� 
 
 
 �	
. Standard finite-element methods perform a
bilinear transformation � � �	 from each element �	 to
the reference domain �� � ���� ��, where computations are
performed with the aid of an integration rule. In particular,
we employ a tensor product of Simpson’s rule:
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is computed as follows:
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Although Simpson’s rule is less accurate than the standard
Gaussian quadrature ("��� � � and !��� � �����), it has
the advantage of including the element nodes in the integra-
tion rule, which leads to the same argument of the lumping

technique. In one-dimensional problems, Simpson’s rule
refines lumping with the inclusion of an extra integration
point at each interval midpoint.

We define the weighting functions in the reference element
using the Lagrange family of degree two for rectangular el-
ements (Zienkiewicz, 1971); that is, ��	!� $
 ���	!
��	$
,
where the one-dimensional functions �� 	� � �� �� �
 are
given by
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From (9), ���� � � if � �� �, which allows us to write equa-
tions (8) as an explicit scheme.

Simpson’s rule is a particular case of Gauss-Lobatto rules
(Davis and Rabinowitz, 1984). Komatitsch and Vilotte em-
ployed polynomial weighting functions of degree & and
considered & � � Gauss-Lobatto integration points.

Examples

In the first example we consider � � ��� �� � ��� ��, � � �,
� � �� � �, �� � , and ��	�� �
 � ���	'�
 ���	'�
. In this
case, the solution of (7) is
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Being an explicit method, (8) is subject to a stability con-
dition which limits the relative sizes of � and �. Ko-
matitsch and Vilotte established (in the two-dimensional
case) � � �	�&���
, but did not provide an upper bound
for the ratio ���.

The numerical experiments are performed in two meshes
of � elements, shown in Figure 1. We denote the so-
lutions using the square and non-square meshes by FEM1
and FEM2, respectively, while the finite-difference solutions
(in the square mesh) are denoted by FDM. We employ an
explicit FDM scheme of second order in time and fourth or-
der in space (Botelho, 1986).
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Figure 1: Meshes employed in the first example.

Let us estimate such bound proceeding as follows: for each
time step � we fix � � �� and solve (7) with progressively
smaller values of � � �� until the stability condition is
violated, i.e., when the error
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becomes suddenly large. Figure 2 shows graphs of �
against the maximum � � �	�
 for which stability is ob-
served. The resulting curves stand below the line � � ��,
providing an estimate in the form

( �
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Figure 2: Numerical study of the ratio ���.

Figure 3 compares the estimate convergence rates of the
solutions FEM1, FEM2, and FDM when � � �. The es-
timate stability condition of FDM is ( � ���� (Kelly et al,
1982). Therefore, FDM admits finer meshes than FEM1,2
under the same time step. Nevertheless, the observed er-
rors FEM1 were significantly lower than FDM. Note that the
errors of FDM and FEM2 were similar.
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Figure 3: Estimate convergence curves of spectral and
finite-difference methods.

The second example simulates of a common source (CS)
gather of a 3600m�1200m section composed of two ho-
mogeneous layers. The velocities on the upper and lower
layers are 2000m/s and 2500 m/s, respectively.

FDM is implemented with absorbing strips of 19 points
length, while FEM1 employs a Rayleigh damping strip
(Sarma et al 1998) of 4 elements. The shot and the seis-
mometers are located right below the absorbing strips; the
layer interface is 400m below the absorbing strips.

Figures 4 and 5 show the synthetic seismograms generated
by FEM1 and FDM, respectively.
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Figure 4: FEM1 CS gather (� � �) and � � ��).
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Figure 5: FDM CS gather (� � �) and � � ��).

Conclusions

The low-order version of the spectral element method pro-
posed by Komatitsch and Vilotte reduces to a simple finite-
element method that performs computations with Simp-
son’s rule and naturally leads to an explicit scheme.
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Numerical studies suggest an estimate stability condition
���� 	 ���. Although this condition is more restrictive
than the finite-difference condition, the spectral element
method has shown to be more accurate.
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