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Abstract

In the wavefront construction (WFC) method there are ge-
ometrical problems which arise from the internal ray trac-
ing procedures. For instance there is the problem of inter-
ception of ray on interfaces and the determination of the
closest distance between a wavefront and a receiver. In
this work, we address some computational geometry algo-
rithms that solve those problems, as well as some speed
up heuristics. Those geometry problems can be decom-
posed in simpler and well known computational geopme-
try problems, such as: (a) finding the intersection between
two segments and (b) determining whether a point is in-
side a polygon and (c) computating the distance between
a point and a segment. As a demonstrative application of
these algorithms, we present a Matlab package that con-
structs kinematic synthetic seismograms of primary reflec-
tion events that comes from a given homogeneous layered
medium.

Introduction

On the seismic studies, ray theory is largely used, mostly
because it provides a very good understanding about the
wave phenomena. Its main paradigm is describing the
wave phenomena as a superposition of some isolated
events, studying their trajectories, termed rays, and the en-
ergy flowing through these paths as well.

As the name says, the fundamental object of the ray the-
ory is the ray itself which is a path which satisfies the Fer-
mat’s principle: The ray paths between two points are those
for which the traveltime is an extremum, either a minimum,
maximum or saddle, with respect to the all nearby possible
paths.

The Snell's law, which is derived from the above princi-
ple, describes the direction of the ray’s propagation when
it strikes an interface. According to this law, the ray, when
being transmitted through an interface, suffers a rotation of
an angle that depends on the ratio between the velocities
before and after the interface.

The above two statements provide the basis to determine
the trajectory of a ray, given source point and initial direc-
tion, i. e., it is possible to determine when and where the
ray intercepts an interface. As a consequence, by position-
ing a source point on the intercepting point and computing

the initial direction by the Snell’s law, two new ray tracing
problems are created, one for the transmitted and other for
reflected rays. These procedure can be repeated as many
times as necessary to trace all ray paths in a medium.

The paradigm of wavefront construction is based on Huy-
gens’ principle which states that every point on the wave-
front is a secondary point source of a wavefront. In this
way, considering a wavefront for a a given time, the wave-
front for the next time step is the envelope of all secondary
wavefronts generated by the point sources located on the
previous wavefront.

Therefore, the wavefront construction can be seen a step-
wise Huygens’ principle. However, in this case, the wave-
fronts are a set of sampled spatial points and at each time
step a new wavefront is constructed. Thus, each sampled
point is considered as a point source for a ray equation,
which is numerically integrated for one time step. The end
points of each of those short duration rays form the newly
sampled wavefront. Figure 1 illustrates the WFC method.

In our case, we rescricted our algorithms to the kinematic
problem. This means that traces amplitudes are not con-
sidered, only the ray paths, wavefronts and traveltimes.
Also, we have not included the ray density control com-
monly used in WFC algorithms.

Due to the WFC characteristic, the traveltime along the rays
is automatically computed. However, only a finite num-
ber of rays is numerically traced, therefore the estimative
of traveltime on each receiver (to buid a seismogram, for
example) is a critical procedure.

In this work, we describe how to solve specifically two ma-
jor geometrical problems which arise from the ray tracing
technique, showing the computational geometry algorithms
as well as some improving heuristics.

Wavefront Construction and Geometric Problems

In order to use the WFC method for seismic modeling pur-
poses in a layered medium, it is necessary to take into
account two major problems: (a) monitoring ray-interface
interceptions and (b) estimating traveltimes on receivers;

More specifically, the WFC method for layered media can
be described as the following algorithm:

Algorithm 1-1: Basic wavefront construction

1) Given a layered homogeneous medium, set the point
source location and the shooting directions; Set the
receivers locations;

2) Propagate a fan of rays, parameterized by travel-
time, forming sampled wavefronts; Along the ray in-
tegration, monitor ray-interface interceptions, applying
Snell’'s law accordingly;
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3) Interpolate the traveltime at the receivers, using the
sampled rays and wavefronts.

Figure 1: lllustration of of basic 2-D wavefront construction
algorithm. The wavefronts are the red lines and the rays
are the blue lines. The purple line is the newly constructed
wavefront.

The computational geometry algorithms are mainly used
in second and third steps of the WFC Algorithm 1-1. More
specifically at each of these steps there is a main geometric
problem. In step 2, there is the necessity of monitoring
the ray-interface interceptions, in order to apply Snell’'s law.
In step 4 it is necessary to identify which ray points will
contribute to the traveltime interpolation, using the receiver
position.

Ray-interface interception

The way WFC method works implies that a verification of
intersection between ray segments an interfaces has to be
done at each time step. As soon as a ray intercepts an
interface it is necessary to apply the Snell’'s law, therefore,
creating a reflected and a transmitted rays. In this case it is
needed the normal vector to the interface computed at the
incidence point. This vector can be computed by means of
finite differences of sampled points along the interface.

Theoretically both rays and interfaces are plane curves (in
2D situation); However, due to the finite precision and WFC
characteristics, they are sampled: the rays are composed
by points computed by numerical integration of ray equa-
tions and the interfaces are sampled or in spline format.

This means that rays and wavefronts are, in fact, polygonal
lines. A fair first approximation is to consider that interfaces
are also sampled, meaning that they are polygonal lines
as well. In this case, there is a very simple algorithm that
computes the interception points between one ray and one
interface:

Algorithm 2-1: Ray-interface interception

1) For each segment of the polygonal line which repre-
sents the interface, verify whether it intercepts each
ray segment using the computational geometry result
1 presented at the Appendix.

It is not hard to see that the computational time of above
algorithm depends linearly on the number of segments of
the polygonal line.

In order to reduce the computing time, some speed-up
heuristics can be included in the previous Algorithm 2-1:

intersection:If it is possible to find two disjoint polygons,
P and @, which contain respectively the ray segment
and the interface segment there is no intersection be-
tween them;

x-coordinate comparison:|f the horizontal projections of
both segments are disjoints, they do not intercept.

Applying these heuristics, Algorithm 2-1 becomes:
Algorithm 2-2: Improved ray-interface interception

1) Construct the rectangle P which diagonal is the ray
segment and which sides are parallel to the axes
{(dashed rectangle in Figure 1);

2) Construct the rectangle @ which sides are parallel to
the axes and are the maximum and minimum coordi-
nates of the sampled interface (green dashed rectan-
gle in Figure 1);

3) if P and @ are disjoints then stop: The ray segment
does not intercept the interface; else continue;

4) Find the segment s such that the z-coordinate of the
ray segment’s left extremity (LF) is between the ex-
tremities z-coordinates of s;

5) Find the segment e such that the z-coordinate of the
ray segment’s right extremity (RE) is between the ex-
tremities z-coordinates of ¢e;

6) For each segment of the polygonal line from S until
FE (solid in Figure 2), verify if it intercepts the ray seg-
ment.

A complexity analysis of this algorithm, using a well-known
binary search in steps 4 and 5, shows that its computa-
tional time is O(2log(n) + m), where n is the number of
segments in the polygonal line and

m = max{¥¢,/¢;},

where ¢, is the length of the horizontal projection of ray
segment r and ¢; is the minimum length of the horizontal
projection of interface segments.

This means that the algorithm is linear in the worst case,
which is an improvement in comparison to the previous
one, which is always linear. Otherwise, if the ratio m is
reasonable, which is acceptable in ray tracing, the compu-
tational time is logarithmic on the number of segments in
the polygonal line.

Point Location

With the purpose of estimating the traveltime at a receiver,
a non-catesian grid is formed by subsequent wavefronts
and adjacent ray paths. After that, the problem of locating
a receiver on this grid becomes the problem of verifying
whether a point is inside a four-sided polygon called cell.

In order to organize the data from the ray paths and wave-
fronts into cells is necessary to apply the following algo-
rithm:

Algorithm 3-1: Organizing the isochron grid

1) Sort the rays points according to their z-coordinates
resulting in a sequence of points;
2) For each pair of adjacent rays: group the points of
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Figure 2: lllustration of improved ray-interface interception
Algorithm 2-2. The blue line is the interface and the crosses
are their sampled points. The ray segment is the black line
segment LE — RE.

isochron of time ¢ with the ones of isochron of time
t + dt (see Figure 3).

The time complexity of the above algorithm is O(nlog(n) +
nt), where n is the number of rays and ¢ the isochron scale
cardinality (the meaning of the “big oh” O notation can be
found in Appendix).

Once Algorithm 3-1 is performed, takes place a simple al-
gorithm which locates the receiver on the isochron grid is:

Algorithm 3-2: Basic point location

1) For each cell on the grid: if the receiver is inside, stop
and return the cell index;

As it can be seen, the above algorithm has a computa-
tional time depending linearly on the number of cells. We
can improve the above algorithm using some additional in-
formation, assuming that the ultimate goal is to perform a
seismic modeling.

Firstly the isochron grid is kept fixed during all the location
process, and, secondly, the points which are going to be
located are seldom scattered, they have a spatial structure
such as an array of receivers. These information can be
used heuristically to reduce the set of eligible cells which
contain the points. This is because, usually, near to a cell
which contains a receiver there are neighbour cells which
can contain another receivers, or even the same cell can
contain more than one receiver.

The heuristics is to consider the eligible subset of cells only
the ones that have some part intersecting the interface.
This subset can be seen as the green cells in Figure 6.
Therefore, this subset covers all the interface and, conse-
quently, contains every possible receiver. The construction
of this subset can be made with a procedure similar to Al-
gorithm 3-1, having the same time complexity:

Algorithm 3-3: Grouping eligible cells

1) Sort the ray points accordingly to their z-coordinates;
2) For each pair of adjacent rays: store the cells which
intersect the interface (see Figure 6).

Therefore, the optimized algorithm becomes:
Algorithm 3-4: Improved point location

1) For each eligible cell (cells in solid green line in Fig-
ure 6): if the receiver is inside the cell, then stop and
return the cell index;

The computational time cost analysis of Algorithm 3-4 does
not reveals much about its complexity. It varies for different
models. Basically, it depends linearly on the number of sec-
tors in the subset and does not vary for different receivers.

Figure 3: lllustration of optimized point location Algo-
rithm 3-4. The source and receiver are indicated by S and
R, respectively. The ray-isochron grid is dashed line and
the subset of sectors is in solid purple line. The set of eligi-
ble cells are depicted in solid green line.

Example

In order to test all geometrical algorithms, we have de-
veloped a small MATLAB package which constructs and
displays rays and wavefronts, for a homogeneous layered
medium. This module also computes kinematic common
shot sections with the primary reflections.

In Figure 7 we see an example of a medium composed
by three layers separated by smooth interfaces. Also it is
shown the reflected rays in second and third interfaces, re-
spectively. For each ray the incidence points were com-
puted using Algorithm 2-2 and the traveltimes were inter-
polated linearly inside the cells which contain the receivers,
as a result of Algorithm 3-4. Figure 8 shows a kinematic
common-shot section of the primary reflection events de-
picted in Figure 7.

Final remarks and conclusions

We have presented a set of geometrical algorithms de-
signed to solve the problems which arise from the wave-
front construction method. Basically two major problems
are adressed: (1) the ray-interface interception and (2) the
point location. Also it was shown that some heuristics
can speed-up the algorithms. This is mainly because of
the spatial structure provided by WFC method which com-
prises ubsequent wavefronts and adjacent rays, forming a
non-Cartesian grid. Also, in the case of modeling, the re-
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ceivers position have another spatial structure. These com-
bined features allow the use of speed-up heuristics to im-
prove the velocity and reliability of computational geometry
methods.
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Appendix
Basic Results of Computational Geometry

Here we show some basic results from computational ge-
ometry

1. Segment-segment intersection:

Let AB and CD be the segments which intersection
is sought. The first step to locate the intersection is to
verify whether the segments really do intercept. This
is true provided two (sufficient and necessary) condi-
tions are satisfied:

(a) The points C and D are in different semi-planes
(IT; and II2) defined by the plane that contains
the two segments and the straight line that con-
tains A and B;

(b) The points A and B are in different semi-planes
(ITs and I14) defined by the plane that contains
the two segments and the straight line that con-
tains C and D.

The first one is satisfied if the cross product between
AB and AC has a opposite orientation of the cross
product between AB and AD as illustrated by Fig-
ure 4. The other condition is completely similar.

‘AB x AD)

IL

c YAB x AC)

Figure 4: lllustration of a methodology to find the intersec-
tion point I between segments A3 and C'D.

Once assured that there exists an intersection, a sim-
ple algebraic formula can be used to compute exactly
the intersection point I

I=A+)AB,

where . .
_ lAC x CD||

" |AB x CD||

and (x) is the cross product operator.

. Location of a point inside a four-sided polygon:

A point P is inside a polygon ABCD if, and only if, it
is either inside the triangle ABC or inside the triangle
CDA (as it can be seen in Figure 5).

Figure 5: A point P inside a four-sided polygon ABC D

The above statement means that the problem of lo-
cating a point in a four-sided polygon is reduced to
locating the point in two adjacent triangles.

In order to verify if a point is inside a triangle, all that
is needed is to check if it belongs to the convex hull
its vertexes. A point P belongs to the convex hull of
{A, B,C} if and only if there are a, 3 and ~, non-
negatives, such that:

aAi+8B1+~vC1 =P,
aAs+BBy+vyCy = Py,
at+B+y=1

where A, Bi, C, and P, are the k-coordinates of
points A, B, C and P, respectively.

. The “Big Oh” notation (O)

We say that a function f : N — R belongs to the set
O(g) if exists ¢ € R and no € N such that:

F(n) < cg(n), Vn>no.

This means that, asymptotically, cg(n) is an upper
bound of f(n). Figure 8 illustrates this concept.

jafmi
/

ny

L

Figure 6: An example of “O” notation. f(n) € O(g(n))
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Figure 7: Running an example with the MATLAB program. Only the rays are depicted.
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Figure 8: Kinematic common-shot seismogram of primary reflections shown in Figure 7.
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