

Inversão quadrática de dados de avo usando o algoritmo de Marquardt

Protázio, J.S., Garabito, G., Santos, D. & Mendes, A.C.M.

Copyright 2003, SBGf - Sociedade Brasileira de Geofísica

This paper was prepared for presentation at the 8th International Congress of The Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 14-18 September 2003.

Contents of this paper was reviewed by The Technical Committee of The 8th International Congress of The Brazilian Geophysical Society and does not necessarily represents any position of the SBGf, its officers or members. Electronic reproduction, or storage of any part of this paper for commercial purposes without the written consent of The Brazilian Geophysical Society is prohibited.

Abstract

In this work it will be presented the Zoeppritz exact equations and quadratic approximations for the R_{pp} and R_{sp} amplitude coefficients. Sequencially, the Marquadt inversion method is used to invert these parameters,

using the quadratic approximation previously obtained. This work is an extension of a previous approach, where it was noticed that in the case of R_{pp} reflections and

dissociated R_{SD} converted, only one parameter can be

estimated, while the combination of these two events provides a good inversion estability, allowing an estimate of at least two media parameters in consideration.

Introducão

A análise de amplitude versus afastamento (AVO) estuda as amplitudes de ondas espalhadas através de interfaces entre meios elásticos com relação à distância fontereceptor (afastamento). O seu estudo é importante na indústria de hidrocarbonetos por sua potencialidade na solução de problemas de monitoramento e delineamento de poços em regiões produtoras, particularmente como discriminador litológico ou indicador de presença e saturação de hidrocarbonetos (Wu, 2000). A descoberta de que a presença de gás produz, em geral, altas amplitudes, conhecidas como "bright spots", deu-se por volta de 1960 e Ostrander (1984), em seu trabalho pioneiro, mostrou como utilizar o "bright spots" para prospectar hidrocarbonetos através de dados sísmicos de AVO. O seu uso, como indicador direto de hidrocarbonetos, está associado às diferentes respostas da velocidade de ondas p em presença de gás em rochas porosas. Isto não afeta a velocidade da onda s, mas reduz a velocidade da onda p. Assim sendo, a análise de AVO constitui um recurso muito útil em presença de respostas sísmicas anômalas.

Entretanto, as amplitudes dos coeficientes das ondas espalhadas através de interfaces planas são dadas pelas equações de Knott-Zoeppritz (Shoenberg & Protázio, 1992) e são bastante intrincadas, o que torna difícil a análise de AVO em termos dos parâmetros sísmicos. O uso de aproximações convenientes torna-se, portanto, necessário e uma vasta literatura sobre o assunto é apresentada em Castagna (1993), com ênfase para as aproximações lineares. Recentemente, Santos (2002) apresentou aproximações lineares e quadráticas dos coeficientes da refletida R_{pp}

e de sua convertida R_{SD} em termos dos contrastes

relativos da impedância ($\overline{\delta Z}$), da velocidade da onda p

 $(\overline{\delta \alpha})$ e do módulo de cisalhamento $(\overline{\delta \mu})$ entre os meios e aplicou o método de inversão linear visando estimar os parâmetros físicos dos meios a partir de dados de AVO em meios perfeitamente elásticos, homogêneos e isotrópicos. Nos procedimentos anteriores à inversão propriamente dita, foram feitas as análises de sensibilidade e de ambiguidade das aproximações linearizadas utilizando-se, para isto, o método SVD e as curvas de contorno das funções objetivo. Na inversão, foi utilizado o método do inverso generalizado e as conclusões resultantes dizem que as aproximações combinadas dos coeficientes R_{DD} e R_{SD} produzem

inversões muito mais estáveis que nos casos das aproximações não combinadas. Entretanto, e apesar da estabilização, apenas dois dos parâmetros físicos dos meios podem ser invertidos. Tais resultados sugerem, portanto, o uso de aproximações além das lineares nestes procedimentos de inversão.

O objetivo deste trabalho é analizar a precisão das aproximações quadráticas dos coeficientes R_{DD} e R_{SD}

e utilizar o algoritmo de Marquardt (Marquadt, 1963) para inverter os parâmetros físicos do modelo a partir destas aproximações. Nestes experimentos serão utilizadas essas aproximações de formas dissociadas. Mapas de contorno, a partir da fixação de um dos parâmetros, são apresentados visando informações sobre o nível de ambiguidade das inversões procedidas.

Obtenção da equação Knott - Zoeppritz

As equações de Knott-Zoeppritz descrevem o comportamento das amplitudes dos coeficientes das ondas espalhadas através de interfaces planas em função do ângulo de incidência e das propriedades físicas do modelo. Os dois meios serão tomados como sendo elásticos, isotrópicos e homogêneos e apenas eventos de ondas refletidas R_{DD} e de suas convertidas

R_{SD} serão considerados, conforme mostra a Figura 1.

Sejam dois semi-planos elásticos, isotrópicos e homogêneos, separados pelo plano horizontal $x_3 = 0$, com o eixo x_3 tomado positivo para baixo e com a propagação de ondas no plano vertical $x_1 - x_3$. Considerando o meio incidente como o semi-plano $x_3 < 0$ e o meio subjacente como o semi-plano $x_3 > 0$,

Modelo em meios elásticos isotrópicos

Figura 1 - Espalhamento devido a uma onda P incidente em que R_{pp} e R_{sp} são as amplitudes das ondas refletida e convertida, respectivamente e ρ_k , $\alpha_k e \beta_k$, os parâmetros físicos dos meios k = 1 (incidente) e k = 2 (subjacente).

as amplitudes dos campos de ondas espalhados são dados pela solução do sistema matricial:

$$\begin{split} X_1(i+r) &= X_2 t \\ Y_1(i-r) &= Y_2 t, \end{split} \tag{01}$$

sendo i, r e t as amplitudes das ondas incidentes, refletidas e transmitidas, respectivamente. As matrizes X_k e Y_k dependem de cada componente horizontal da vagarosidade s (lei de Snell), da densidade (ρ_k), das velocidades da ondas p (α_k) e s (β_k) e das componentes verticais

$$q_{3p_k} = \sqrt{1 - \alpha_k^2 s^2}$$
 $e q_{3s_k} = \sqrt{1 - \beta_k^2 s^2}$, (02)

o subscrito k representando o meio k = 1 (incidente) e k = 2 (subjacente) e apresentam as formas:

$$\begin{split} X_{k} = \begin{bmatrix} \alpha_{k} s & q_{3s_{k}} \\ -\rho_{k} \alpha_{k} (1 - 2\beta_{k}^{2}s^{2}) & 2\rho_{k} \beta_{k}^{2} s q_{3s_{k}} \end{bmatrix} \end{split} \tag{03} \\ Y_{k} = \begin{bmatrix} -2\rho_{k}\beta_{k}^{2} s s_{3p_{k}} & -\rho_{k} \beta_{k} (1 - 2\beta_{k}^{2}s^{2}) \\ q_{3p_{k}} & -\beta_{k} s \end{bmatrix} \end{split}$$

Considerando-se apenas eventos com propagação précrítica, uma solução de (1.1) é dada por (Schoenberg & Protázio, 1992):

$$\begin{split} r &= Ri \equiv (X_1^{-1}X_2 - Y_1^{-1}Y_2)(X_1^{-1}X_2 + Y_1^{-1}Y_2)^{-1}i \\ Ti &\equiv 2(X_1^{-1}X_2 + Y_1^{-1}Y_2)^{-1}i, \end{split} \tag{04}$$

sendo R e T conhecidas como as matrizes de reflexão e de transmissão, respectivamente. Neste trabalho estaremos interessados apenas em eventos de reflexões e a matriz R apresenta-se na forma:

$$R = \begin{bmatrix} R_{pp} & R_{ps} \\ R_{sp} & R_{ss} \end{bmatrix},$$
 (05)

sendo que nesta representação o segundo sub-índice denota o tipo da onda incidente e o primeiro, o da onda espalhado. As amplitudes dos coeficientes $R_{pp} \ e \ R_{sp}$, de nosso interesse, são dadas por (Santos, 2002):

$$\mathsf{R}_{pp} = \frac{(\mathsf{A}_0 - \mathsf{B}_0) + (\mathsf{A}_2 - \mathsf{B}_2)s^2 + (\mathsf{A}_4 - \mathsf{B}_4)s^4 - \mathsf{B}_6s^6}{(\mathsf{A}_0 + \mathsf{B}_0) + (\mathsf{A}_2 + \mathsf{B}_2)s^2 + (\mathsf{A}_4 + \mathsf{B}_4)s^4 + \mathsf{B}_6s^6}$$
(06)

$$R_{sp} = \frac{2\alpha_{1}s(D_{0} - D_{2}s^{2} + D_{4}s^{4})q_{3p1}}{(A_{0} + B_{0}) + (A_{2} + B_{2})s^{2} + (A_{4} + B_{4})s^{4} + B_{6}s^{6}},$$
(07)

sendo

$$\begin{aligned} A_{0} &= \rho_{2}\alpha_{2}(\rho_{2}\beta_{2}q_{3s1} + \rho_{4}\beta_{1}q_{3s2})q_{3p1}, \\ A_{2} &= 4Gq_{3p1}q_{3s1}(Gq_{3p2}q_{3s2} - \rho_{2}\alpha_{2}\beta_{2}), \\ A_{4} &= 4G^{2}\alpha_{2}\beta_{2}q_{3p1}q_{3s1}, \end{aligned} \tag{08} \\ B_{0} &= \rho_{1}\alpha_{1}(\rho_{2}\beta_{2}q_{3s1} + \rho_{4}\beta_{1}q_{3s2})q_{3p2}, \\ B_{2} &= \alpha_{1}\beta_{1}[4\rho_{1}Gq_{3p2}q_{3s2} + (\rho_{2} - \rho_{1})^{2}\alpha_{2}\beta_{2}], \\ B_{4} &= 4G\alpha_{1}\beta_{1}[Gq_{3p2}q_{3s2} - (\rho_{2} - \rho_{1})\alpha_{2}\beta_{2}], \\ B_{6} &= 4G^{2}\alpha_{1}\beta_{1}\alpha_{2}\beta_{2}, \\ D_{0} &= -[\rho_{2}(\rho_{2} - \rho_{1})\alpha_{2}\beta_{2} + 2\rho_{1}Gq_{3p2}q_{3s2}], \\ D_{2} &= 2G[(2\rho_{2} - \rho_{1})\alpha_{2}\beta_{2} - 2Gq_{3p2}q_{3s2}], \\ D_{4} &= -4G^{2}\alpha_{2}\beta_{2}, \\ \text{sendo} \end{aligned}$$

$$G = \rho_2 \beta_2^2 - \rho_1 \beta_1^2 \equiv \mu_2 - \mu_1 \,. \tag{09}$$

As equações de zoeppritz em função dos contrastes médios relativos.

Para a obtenção das equações de Zoeppritz em função dos contrastes médios relativos dos parâmetros físicos dos meios, é necessário estabelecer uma reparametrização dos parâmetros elásticos em termos destes contrastes. Para isto, sejam:

$$\overline{\rho} = \frac{\rho_2 + \rho_1}{2}, \ \overline{\alpha} = \frac{\alpha_2 + \alpha_1}{2} \ e \ \overline{\beta} = \frac{\beta_2 + \beta_1}{2}$$
 (10)

as médias aritméticas das densidades e das velocidades das ondas p e s, respectivamente e

$$\delta \rho = \frac{\rho_2 - \rho_1}{2}, \ \delta \alpha = \frac{\alpha_2 - \alpha_1}{2} \ e \ \delta \beta = \frac{\beta_2 - \beta_1}{2}$$
 (11)

os contrastes médios das densidades e das velocidades das ondas p e s, respectivamente. Os contrastes

médios relativos das densidades e das velocidades das ondas p e s são, então, definidos por:

$$\overline{\delta\rho} = \frac{\delta\rho}{\overline{\rho}}, \ \overline{\delta\alpha} = \frac{\delta\alpha}{\overline{\alpha}} \ \mathbf{e} \ \overline{\delta\beta} = \frac{\delta\beta}{\overline{\beta}}.$$
 (12)

Os contrastes médios da impedância e do módulo de cisalhamento são definidos como:

$$\overline{\delta Z} = \overline{\delta \rho} + \overline{\delta \alpha} \ \mathbf{e} \ \overline{\delta \mu} = \overline{\delta \rho} + 2 \overline{\delta \beta} \ . \tag{13}$$

Portanto, $\overline{\delta\rho} = \overline{\delta Z} - \overline{\delta\alpha}$ e $\overline{\delta\beta} = \frac{1}{2}(-\overline{\delta Z} + \overline{\delta\alpha} + \overline{\delta\mu})$,

permitindo a reparametrização desejada em termos de $\overline{\delta Z}, \overline{\delta \alpha}, e \overline{\delta \mu}$:

$$\rho_{1} = \overline{\rho}(1 - \overline{\delta Z} + \overline{\delta \alpha}); \qquad \rho_{2} = \overline{\rho}(1 + \overline{\delta Z} - \overline{\delta \alpha})$$

$$\alpha_{1} = \overline{\alpha}(1 - \overline{\delta \alpha}); \qquad \alpha_{2} = \overline{\alpha}(1 + \overline{\delta \alpha}) \qquad (14)$$

$$\beta_{1} = \frac{\overline{\beta}}{2}(2 + \overline{\delta Z} - \overline{\delta \alpha} - \overline{\delta \mu}); \qquad \beta_{2} = \frac{\overline{\beta}}{2}(2 - \overline{\delta Z} + \overline{\delta \alpha} + \overline{\delta \mu})$$

Outro parâmetro importante é a relação V_s/V_p, dada por $\kappa = \frac{\overline{\beta}}{\overline{\alpha}}$. A substituição das equações (13) em (14) determina a dependência das amplitudes R_{pp} e R_{sp} em termos do vetor de parâmetros definido por $\delta p = (\overline{\delta Z}, \overline{\delta \alpha}, \overline{\delta \mu})^t$. O vetor de vagarosidade s pode ser definido de acordo com a lei de Snell:

$$\mathbf{s} = \frac{\operatorname{sen} \theta_1}{\alpha_1} = \frac{\operatorname{sen} \theta_2}{\alpha_2} = \frac{\operatorname{sen} \phi_1}{\beta_1} = \frac{\operatorname{sen} \phi_2}{\beta_2}, \quad (15)$$

sendo θ_1 , θ_2 , ϕ_1 e ϕ_2 os ângulos de reflexão (igual ao de incidência) e sua convertida e de transmissão e sua convertida, respectivamente.

Aproximações quadráticas

As aproximações quadráticas das amplitudes R_{pp} e R_{sp} são calculadas a partir das suas expansões de Taylor em torno de $\overline{\delta Z} = 0$, $\overline{\delta \alpha} = 0$ e $\overline{\delta \mu} = 0$ e têm validade apenas para eventos pré-críticos e pequenos contrastes relativos dos parâmetros. Wang (1999) apresentou trabalho obtendo aproximações quadráticas para as amplitudes das ondas refletida R_{pp} e transmitida T_{pp} , utilizando o que ele chama de expansão pseudo-quadrática em termos do parâmetro do raio s. Nas condições propostas, as aproximações apresentam as formas:

$$\mathsf{R}_{\mathsf{pp}}(\boldsymbol{\theta}_{\mathsf{k}}) \cong \mathsf{m}(\boldsymbol{\theta}_{\mathsf{k}})^{\mathsf{t}} \delta \mathsf{p} + \delta \mathsf{p}^{\mathsf{t}} \mathsf{M}(\boldsymbol{\theta}_{\mathsf{k}}) \delta \mathsf{p}$$
(16)

$$\mathsf{R}_{\mathsf{Sp}}(\theta_{\mathsf{k}}) \cong \mathsf{q}(\theta_{\mathsf{k}})^{\mathsf{L}} \delta \mathsf{p} + \delta \mathsf{p}^{\mathsf{L}} \mathsf{Q}(\theta_{\mathsf{k}}) \delta \mathsf{p}, \tag{17}$$

sendo m(θ_k) e q(θ_k) vetores e M(θ_k) e Q(θ_k) matrizes que carregam informações sobre a geometria de aquisição dos dados para cada ângulo de incidência θ_k ,

 $k = 1, ..., N_{obs}$, N_{obs} representando o número de observações. Os vetores e as matrizes acima definidos são dados por:

$$\mathsf{m}(\theta_{\mathsf{k}}) = \left[1 \ \mathrm{sen}^2 \, \theta_{\mathsf{k}} \ -4\kappa^2 \, \mathrm{sen}^2 \, \theta_{\mathsf{k}}\right]^{\mathsf{T}},\tag{18}$$

$$q(\theta_{k}) = \left[-1 \ 1 \ -2\kappa\right]^{t} \operatorname{sen} \theta_{k} + \left[\frac{-\kappa^{2}}{2} \ \frac{\kappa^{2}}{2} \ \kappa(1+2\kappa)\right]^{t} \operatorname{sen}^{3} \theta_{k},$$
(19)

$$M(\theta_{k}) = \begin{vmatrix} -\kappa & \kappa & 0\\ 2 - \kappa & -4\kappa^{2}\\ 4\kappa^{3} \end{vmatrix} \sin^{2}\theta_{k}, \qquad (20)$$

$$Q(\theta_{k}) = \begin{bmatrix} -\frac{1}{2} & 0 & -\frac{1}{4(1-4\kappa)} \\ & \frac{1}{2} & \frac{1}{4(1-4\kappa)} \\ & & 0 \end{bmatrix} \operatorname{sen} \theta_{k}$$
(21)

$$+ \begin{bmatrix} -\frac{\kappa^2}{4} & -\frac{1}{2(1+\kappa^2)} & -\frac{\kappa}{8(4-19\kappa+4\kappa^2)} \\ & \frac{1}{4(4+5\kappa^2)} & \frac{\kappa}{8(12+5\kappa+4\kappa^2)} \\ & & \kappa^2(1-7\kappa) \end{bmatrix} \text{sen}^3 \theta_{\text{K}}.$$

A inversão quadrática de avo através do método dos mínimos quadrados.

Para a inversão quadrática de AVO será usado o ajuste de curvas por mínimos quadrados. Para isto, sejam:

$$\begin{split} \phi_{pp}(\delta p) &= \sum_{j=1}^{N_{obs}} \left(\mathsf{R}_{pp}^{obs}(\theta_{k}) - \mathsf{m}(\theta_{k})^{t} \delta p - \delta p^{t} \mathsf{M}(\theta_{k}) \delta p \right)^{2} (22) \\ \phi_{sp}(\delta p) &= \sum_{j=1}^{N_{obs}} \left(\mathsf{R}_{sp}^{obs}(\theta_{k}) - \mathsf{q}(\theta_{k})^{t} \delta p - \delta p^{t} \mathsf{Q}(\theta_{k}) \delta p \right)^{2}, (23) \end{split}$$

sendo R^{obs}_{pp} e R^{obs}_{sp} as amplitudes das ondas refletidas e convertidas observadas, respectivamente. A inversão consiste nos seguintes problemas de minimização: min[$\phi_{pp}(\delta p)$] (caso R^{obs}_{pp}), min[$\phi_{sp}(\delta p)$] (caso R^{obs}_{sp}) e min[$\phi_{pp}(\delta p) + \lambda \phi_{sp}(\delta p)$] (caso combinado), sendo λ um parâmetro não negativo que pondera uma maior ou menor influência dos dados da onda convertida.

Experimentos numéricos

Nos experimentos numéricos que se seguem serão usados dois meios cujos parâmetros físicos são apresentados na Tabela 1. Na tabela 2, são apresentados os contrastes médios relativos correspondentes a estes dois meios.

Tabela 1. Parâmetros para coeficientes de refletida R_{DD} e convertida R_{SP}

	Material	$\rho(g/cm^3)$	α(m/s)	β(m/s)
Meio 1	Folhelho	2,20	3270	1650
Meio 2	Arenito	2,05	3040	2050

Tabela 2. Contrastes médios relativos do modelo apresentado na tabela 1

Contrastes	k	$\overline{\delta Z}$	$\overline{\delta \alpha}$	$\overline{\delta\mu}$
	0,5864	-0,0353	-0,0365	0,1081

Precisão das aproximações quadráticas

Os resultados das aproximações quadráticas das amplitudes $R_{pp} e R_{sp}$ são mostrados nas Figuras 1(a) e 1(b). Observa-se que estas aproximações apresentam excelente precisão dentro do intervalo de incidência [0^o, 30^o], sugerindo, portanto, que os procedimentos de inversão sejam estabelecidos neste intervalo.

Regiões de ambigüidade

As figuras abaixo descrevem as regiões de ambigüidade das funções objetivos $\phi_{pp}(\delta p) = \phi_{sp}(\delta p)$. Como tais funções dependem de três parâmetros físicos, a obtenção das curvas de contorno abaixo é feita pela fixação de um dos parâmetros. Neste trabalho será fixado $\overline{\delta \mu}$. Observa-se, pelos exemplos apresentados:

Resultados

As amplitudes dos coeficientes da onda refletida R_{pp} e da convertida R_{sp} foram obtidas sinteticamente pelas equações exatas de Zoeprittz, descritas em (06) e (07). Foi, então, aplicado o Método de Marquardt para a

Figura 2: (a) Gráfico mostrando um modelo sintético de regiões de ambigüidade para o coeficiente da refletida Rpp; (b) Gráfico mostrando um modelo sintético de regiões de ambigüidade para o coeficiente da convertida Rsp.

inversão quadrática dos dados, utilizando-se as aproximações descritas em (22) e (23). A inversão foi feita em dois níveis, sem e com ruídos aleatórios de 5% e considerou apenas os dados de Rpp e Rsp não combinados. Nos dois níveis de experimentos o parâmetro $\overline{\delta\mu}$ foi mantido fixo e observou-se uma excelente convergência do estimador aplicado. As Figuras 3, 4, 5 e 6.ilustram estes resultados. Na parte (a) de cada figura são ilustradas as várias iterações obtidas pelo método de Marquardt enquanto na parte (b) são comparadas as amplitudes obtidas pelos dados sintéticos com as obtidas a partir dos parâmetros estimados. Os valores dos parâmetros estimados são comparados com os sintéticos tavés das Tabelas 3 e 4

Figura 3: (a) Gráfico ilustrando o ponto ótimo localizado na região de ambiguidade do evento de reflexão R_{pp} ; (b) Gráfico ilustrando a curva de inversão dos parâmetros elásticos $\overline{\delta Z}$ e $\overline{\delta \alpha}$ na ausência de ruído.

Figura 4: (a) Gráfico ilustrando o ponto ótimo da região de ambiguidade do evento refletido R_{pp} ; (b) Gráfico ilustrando a curva de inversão dos parâmetros elásticos $\overline{\delta Z}$ e $\overline{\delta \alpha}$ com presença de ruído aleatório de 5%.

Figura 5: Gráfico (a) ilustra o ponto ótimo da região de ambiguidade do evento convertido R_{sp} e gráfico (b) mostra a curva de inversão dos parâmetros elásticos $\overline{\delta Z}$ e $\overline{\delta \alpha}$ com ausência de ruído.

Figura 6: (a) Gráfico ilustrando o ponto ótimo da região de ambiguidade do evento convertido R_{sp} ; (b) Gráfico ilustrando a curva de inversão dos parâmetros elásticos $\overline{\delta Z}$ e $\overline{\delta \alpha}$ com presença de ruído aleatório de 5%.

As duas tabelas abaixo ilustram os esultados dos contrastes elásticos obtidos no processo de inversão através do método de Marquadt comparado aos

contrastes observados (exatos) e aproximados das amplitudes refletida $\mathsf{R}_{\mathsf{D}\mathsf{D}}$ e convertida $\mathsf{R}_{\mathsf{S}\mathsf{D}}$.

Tabela 3. Dados observados da amplitude refletida Rpp.

Parâmetros elásticos	$\overline{\delta Z}$	$\overline{\delta \alpha}$	$\overline{\delta\mu}$ (fixo)
Exatos	-0.0717	-0.0365	0.1809
Invertidos sem ruído	-0.0706	-0.1484	0.1809
Invertido com ruído (5%)	-0.0702	-0.1483	0.1809

Tabela 4. Dados observados da amplitude convertida R_{SD}

Parâmetros elásticos	δZ	$\overline{\delta \alpha}$	$\overline{\delta\mu}$ (fixo)
Exatos	-0.0717	-0.0365	0.1809
Invertidos sem ruído	-0.0281	-0.0033	0.1809
Invertido com ruído (5%)	-0.0583	-0.0205	0.1809

Conclusões

Neste trabalho foram apresentadas as equações exatas de Knott - Zoeppritz que calculam as amplitudes de onda refletida R_{DD} e convertida R_{SD} e de suas aproximações quadráticas em termos dos contrastes médios relativos da impedância (δZ), da velocidade de onda P ($\delta \alpha$) e do parâmetro cisalhante ($\delta \mu$) Em experimentos de incidência na faixa [0⁰, 30⁰] estas aproximações se mostraram bastante precisas e foram usadas como modelo para a inversão quadrática dos parâmetros a partir de dados sintéticos obtidos pelo uso das equações exatas de Knott-Zoeprittz. O método de Marguardt foi utilizado neste procedimento de inversão e se mostrou bastante estável, determinando boas estimativas dos dos meios, mesmo considerando-se parâmetros experimentos contaminados com 5% de ruído aleatório.

Agradecimentos

Agradecimentos ao CNPq, à CAPES e à ANP pela concessão de bolsas e financiamentos, permitindo o desenvolvimento deste trabalho.

Referencias

Castagna, J. P., 1993, AVO analysis – Tutorial and Review. In Castagna, J.P. & Backus, M.M. Eds. Offsetdependent reflectivity – Theory and pratice in AVO analysis: SEG: p. 3-35.

Marquardt, D. W., 1963, An algoritmo for least – squares estimation of nonlinear paramenter, J. Sor. Ind. Appl. Math.11, 431 - 441

Ostrander, W. J., 1984, Plane Wave Reflection Coefficients for Gas Sand at Nonormal Angles of Incidence. Geophysics, 49:1637-1648.

Santos, D. F., 2002, Análise das Aproximações R_{PP} e R_{SP} para Meios Isotrópicos. Tese de Mestrado. Geofísica/CG/UFPa. Belém. PA.

Schoenberg, M. & Protázio, J. P., 1992, Zoeppritz rationalized and generalized to anisotropy. Journal of Seismic Exploration. no. 1, p. 125-144.

Wang, Y., 1999, Approximation to the Zoeppritz equations and their use in AVO analysis. Geophysics. v. 64, no. 6, p. 1920-1927.

Wu, Y., 2000, Estimation of gas saturation using P to S converted waves. Annual Meeting SEG/Calgary 2000.