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Abstract  

We propose the simulation of oil recovery by means of a 
molecular type approach. By using a finite set of particles 
under the interaction of a Lennard-Jones type potential 
we simulate the behavior of a fluid in a porous media, and 
we show under certain conditions that the fingering 
phenomena appears 

Introduction  

In this work we propose the simulation of oil recovery by 
means of a molecular type approach. This means that we 
consider the materials to be composed of a finite number 
of particles, which are approximates for molecules. 
Porous flow is studied qualitatively under the assumption 
that particles of rock, oil and the flooding flow interact with 
each other by means of a compensating Lennard- Jones 
type potential. We also consider the system to be under 
the influence of gravity. We study miscible displacement 
in an oil reservoir from various sets of initial data. The 
velocity and the rate of injection of the ingoing particles 
proved to be among the most important parameters that 
can be adjusted to increase the rate of production. It is 
also noted that the fingering phenomenon is readily 
detected. This simulation technique has been used in [2-
5] to simulate several physical systems. Details of this 
method applied to the study of porous flow can be 
founded in [1,6]. 

Model formulation  

Consider a cubic region R, which is a porous medium. We 
assume that in this region we have a resident fluid or oil. 
We shall introduce a different kind of fluid which, as a 
matter of convenience, will be called water, although it is 
an aqueous solution which could be a polymeric solution, 
surfactant solution or a brine. The physical system 
consists of N=N1+N2+N3 particles, P1, P2, …, PN, with 
masses m1, m2, …, mN. The particles  

1
,...,, 21 NPPP    Represent rocks,  

211
,...,, 21 NNN PPP ++   Oil, and 

NNN PPP ,...,, 21 12 ++    Incoming water 

For purposes of injection of water and production of oil, 
two wells are opened, one in one corner of R, for 
injection, and other in the diagonally opposite corner for 
production, see Fig. 1and 2.  

III IV 

 
 

Fig. 1. Initial configuration in two dimensions with 
four subregions of equal area. 

 
Fig. 2. Initial configuration in three dimensions 

 

The variables at time t  are:  tkk ∆=

ki,r            Coordinates of the ith particle 

kjir ,,  Distance between the particles  and  iP jP

ki,v    Velocity of the ith particle,  

ki ,a  Acceleration of the ith particle,  

kji ,,F  Local force exerted on  by , iP jP

ki,
*F  Local force acting on  due to the other 

particles, 
iP
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ki,f    Long range force acting on  (like gravity), iP

ki,F  Total force on particle  iP

                     for i=1,2,...,N and    k=0,1,...  

 

The local force exerted on  by , is kjiF ,, iP jP
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where the values of the parameters , ,  , 
and depend on the particles which are interacting. 

The total local force F  acting on particle  due to 
the other particles is given by:  

jiH , jiG ,

iP

jiq ,

jip ,

ki,
*

 

∑
≠=

=
N

ijj
kjiki

,1
,,,

* FF .                                (2) 

Therefore, the total force acting upon the particle  is  iP

                         F                               (3)  kikiki ,,
*

, fF +=

The acceleration of  is related to the force by Newton's 
Law : 

iP

                             F .                                 (4) kiiki m ,, a=

In general, the second order differential equations system 
(4) can not be solved analytically from given initial 
positions and velocities, therefore it must be solved 
numerically. For economy, simplicity and relative 
numerical stability we use the “leap frog'' formulae, which 
has second-order accuracy in time.  

                          tiii ∆+= 0,0,2/1, 2
1 avv  

                         tkikiki ∆+= −+ ,2/1,2/1, 2
1 avv  

                          tkikiki ∆+= −+ 2/1,,1, 2
1 vrr  

                          for i=1, 2,…, N   and k=1,2,… 

 The number of calculations required to evaluate  (1) at 
each iteration is O(N2). However this number is much 
smaller if the force is truncated for a distance greater than 

.  cr

 

Initial conditions 

The rock and oil particles, for two an three dimensions, 
were set up at the initial time in such a way that they 
satisfied an equilibrium state, as shown in Fig. 1 and 2. 

Boundary conditions  

We assume that the particles of the fluids loose energy 
when they interact with the walls of the region R, 
therefore it will be necessary to model the hardness of the 
wall relative to the reflection of the interacting fluid, and 
this is done by using the following damping factors acting 
on the velocity of the reflected particles, as shown in 
Figure 3.  

andNNNifori ,,...,14.0 211 ++==δ  

.,...,18.0 21 NNNifori ++==δ  

Boundary

(vi,k,x, vi,k,y)
Pi,k

Pi,k+1
(-vi,k+1,x, vi,k+1,y)δι

  
Fig. 3. Reflexion of the position and damping of the 
velocity 

 

Numerical results in 2D  

All the examples were run with time step  on 
a cluster of pc computers, the distance between particles 
of water before going into the well was d=0.5 and their 
velocity was v=15. The gravity constant was equal to 
g=9.8. The Lennard-Jones potential parameters are 
summarized in table 1.  

5−=∆ Et

 

 Rock Oil Water 

Rock H=0 
G=0 

  

Oil H=1 
G=3 
E=0.60*F 

H=1 
G=1 
E=1.3*F 

 

Water H=1.5 
G=0 
F=F*13/36 

H=1 
G=0 
E=1.15*F 

H=1 
G=0 
E=F 

Table1. Parameters for the numerical experiments in 
two dimensions. In this case F=0.5. 
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Figure 4 shows the advancement of water for different 
times, the shaded area is the region which has been 
traveled only by water, this means that no oil particle has 
been in that area for some time. This figures remind us of 
the fingering phenomena. 

 

 

 

 

 
 
 

 

 

 

 

 

Fig. 4. Advancement of water for d=1, v=5, at different 
times. (a) Iter=3E5, (b) Iter=4.25E5, (c) Iter=7.8E5 and d) 
Iter=1.2E6. 

Figure 5 shows the number of particles of oil out and the 
number of particles of water out versus time. We can see 
from the graph that for t small, the rate of oil production is 
higher when v is higher. We can also observe that water 
comes out of the production well sooner for v=100 than for 
v=15. 

Fig. 5. Comparison of the effect of the velocity of the 
water particles on the oil and water particles. 

Figure 6 shows the effect on the oil and water production 
in two different cases: first, the angle of water injection is 
fix to π/4. In the second case the angle is aleatory with a 

uniform distribution in the range [π/4-π/6, π/4+π/6]. In both 
cases the oil production is very similar. 

 

Fig. 6. Effect of the injection angle on oil and water 
production. 

 

In figure 1 we showed the region R, subdivided in four 
subregions of the same area, and in figure 7 we observe 
the amount of oil and water particles in each one of the 
subregions. We see that the behavior of the oil and water 
is similar in all of them. Also we notice that the subregions 
tend to have a constant number of particles in each one.   
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Fig. 7.  Comparison of oil and water particles in each 
subregion. Oil in red and water in blue. d=1, v=5. 

 

Numerical results in 3D 

The evolution of the system, in three dimensions, is 
shown in Fig 8. All the examples were run with time step 

 on a cluster of PC computers. 5−=∆ Et

(a) (b) 

(c) (d) 
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Fig. 8. Evolution of the oil and water particles. (a) 
Iter=50, 000, (b) Iter=1E6,  and (c) Iter=8E6 

The distance between particles of water before going into 
the well, was d=0.5 and their and velocity was v=5.0. The 
gravity constant was equal to g=9.8. The Lennard-Jones 
potential parameters are summarized in table 1, but in 
this case F=1.0. 

Figure 9 shows the effect of the oil and water production, 
when the velocity of the water particles is increased. An 
increment in the velocity produced an increment on the oil 
and water production.  

In figure 10 we have the effect of the water particles 
separation on the oil and water production. The 
production of both fluids increases when the particle 
separation decreases  

The effect of the injection angle of water particles on the 
oil and water production can be observed in figure 11. We 
consider two cases, first the injection angle is fix and the 
vector velocity of the water particles is given by v=vn, 
where n=(1,1,1)/31/2 is a unit vector. On the second case 
the velocity vector is choosen as v=vn1, where n1 is an 
aleatory unit vector and the angle between n and n1 has a 
uniform distribution in the interval [0,  π/6]. 

 

(a) 

Fig. 9. Comparison of the effect of the velocity of the 
water particles and the oil and water production 

Fig. 10. Comparison of the effect of the water particle 
separation on the oil and water production.  

(b) 

(c) 

 
Fig. 11. Comparison of the effect of the injection 
angle of the water particles on the oil and water 
production. a) circles: v=vn,  b) squares: v=vn1. 
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Figure 12 shows the cubic region R, subdivided in four 
regions of the same volume each.  

I

II III IV

 
Fig. 12. Well with four subregions of equal volume 

 

In Figure 13 and 14 we have the amount of oil and water 
particles un each one of the subregions. We observe that 
the number of particles tends to a constant in each one of 
them and higher injection velocities the equilibrium is 
reached in a shorter time.  
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Fig. 13.  Comparison of oil and water particles in each 
subregion. Oil in red and water in blue. d=1, v=5. 
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Fig. 14.  Comparison of oil and water particles in each 
subregion. Oil in red and water in blue. d=1, v=50. 
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