
2-D ZO CRS stack by considering an acquisition line with smooth topography
Pedro Chira-Oliva(

�
), João C. R. Cruz(

�
), German Garabito (

�
), Peter Hubral(

�
) and Martin Tygel ( � )

(
�
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Abstract

The Common-Reflection-Surface (CRS) stack is a new
method to simulate zero-offset (ZO) (stacked) sections, as
well as to provide useful kinematic wavefield attributes from
multi-coverage seismic data. The 2-D CRS stacking oper-
ator is based on the second-order hyperbolic traveltime ap-
proximation, which depends on three parameters. These
are determined by means of an optimization process that
fits the CRS stacking operator to reflection events within
the multi-coverage seismic data. The objective function is
semblance of the data samples along the CRS stacking op-
erator. In this paper we present an extension of the CRS
stack method that takes into account the effects of an ac-
quisition line with smooth topography. Application to a syn-
thetic dataset shows that the approach is able to correctly
estimate the CRS parameters and produce a good stacked
section in a topographic environment.

Introduction

One of the main conventional stacking methods is the
Common-Midpoint (CMP) stack introduced by Mayne
(1962). This method organizes the data into CMP gath-
ers. Each CMP gather consists of source-receiver pairs
symmetrically located with respect to the CMP. To stack the
data along the CMP gather one uses the Normal-Moveout
(NMO) correction that depends on a single parameter, the
NMO velocity. In order to include effects of dip angles in
the stack process, Deregowski (1986) proposed the Dip-
Moveout (DMO) stack process. That method introduces a
correction to the NMO procedure, however maintaining its
general structure as a single parameter stack applied to the
CMP gather.

As an alternative to NMO/DMO stacking process, new trav-
eltime approaches have been introduced that are able to
(a) use in the stacking procedure the full multicoverage
available data (instead of CMP gathers only) and (b) per-
form, in an automatic way, the stacking to all time sam-
ples in the ZO section to be constructed (as opposed to
the NMO method that manually chooses user-selected in-
terpreted events and also selected CMPs for stacking).
The approaches, called macro-model velocity independent

methods, include the Polystack (e.g. De Bazelaire (1988)),
Multifocusing (e.g. Gelchinsky et al. (1999a,b); Landa et
al. (1999); Chira (2000)), and the CRS stack (e.g. Müller
(1999); Mann et al. (1999); Jäger et al. (2001); Gara-
bito (2001); Biloti (2001)). As main products, the new
techniques produce high-resolution ZO sections and useful
kinematic parameters. A common feature to all methods is
that the subsurface model is supposed to satisfy the con-
ditions of the zero-order ray theory. The reason of the ter-
minology “macro-model independent methods” is that a ve-
locity analysis, as conventionally done in the NMO method,
is not required or reduced to a minimum. For a survey on
the macro-velocity independent methods, the reader is re-
ferred to Hubral (1999).

As one example of a macro-model independent method,
the 2-D CRS method has been introduced to simulate ZO
sections from multi-coverage seismic data. 2-D means
where sources and receivers are supposed to be located
on a straight line (the seismic line) on the measurement
surface and that the subsurface model has not much abrupt
lateral variations away to the seismic line. The 2-D ZO CRS
stacking operator consists of the second-order hyperbolic
traveltime, that is valid for all sources and receivers that
are arbitrarily located in the vicinity of a ZO point.

Land seismic data are in general affected by irregularities
in the near surface, such as changes in elevation, weath-
ering base and weathering velocity. Conventional seismic
processing considers these effects as deviations from hy-
perbolic trends in the CMP gathers, that can be eliminated
by the use of field and residual static corrections. The cor-
rections provide generally better imaging results, but are
very sensitive to the choice of parameters involved in the
picking phase of the static correction. The specific case of
the field static correction based on refraction seismic data
suffers, for instance, from the uncertainties in the weather-
ing velocity field.

Chira and Hubral (2003) presented the CRS operator con-
sidering the case of measurement surface (seismic line)
with smooth topography. The case of a rugged topography
is presented by Zhang et al. (2002). In the framework of
the Multifocusing method, the case of irregular topography
is considered in Gurevich et al. (2002). Chira et al. (2001)
also presented an extension of the 2-D ZO CRS operator
that includes, besides the smooth topography, also the ef-
fect of near-surface inhomogeneity.

According to Guo and Fagin (2002), land surveys should al-
ways be processed considering a floating datum that repre-
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sents topography. They showed that velocity analysis from
a flat seismic reference datum creates errors to estimate
the depth and interval velocities. This problem appears
even in the case of a flat topography, due to deviation of
the take-off angles of the seismic ray paths.

In this paper we extend the CRS method approach pre-
sented in Garabito et al. (2001) to estimate the CRS stack
parameters and produce the CRS stack, to the case of an
acquisition line with smooth topography. For that, we apply
the extended hyperbolic traveltime as in Chira and Hubral
(2003) and Chira (2003). The CRS stack performance is
examined by means of its application of a synthetic seis-
mic dataset.

Theory

The 2-D CRS stacking operator depends on three pa-
rameters that are associated with two hypothetical waves,
namely the normal-incidence-point (NIP) and Normal (N)
waves (Hubral, 1983). The parameters are the emergence
angle of the normal ray, and two wavefront curvatures. The
emergence point, ��� , of the normal ray is called central
point. The NIP wave propagates upwards from a point
source located at the normal ray incidence point. On the
other hand, the N wave propagates upwards starting as a
wavefront that coincides with reflector in the vicinity of the
NIP.

The CRS stack traveltime approximation with smooth to-
pography and without considering near-surface inhomo-
geneity effects (i.e., gradients) in the vicinity of the central
point, is given in Chira et al. (2001),

�����	��
����������� �����������! � �"�# �	��
%$&� � �(' �
� � � �" # ��)+* � �  ��,.- $ )/* �0 ��1 � ' �	��
%$&� � ���
� � � �" # � )+* � �  ��,2-�354 $ )/* �0 �� 1 � ' � �76

(1)

Here,
� � and

� � are the ZO reflection traveltime and the
central point coordinate, respectively and "8# is the near-
surface velocity of the P-P wave at the central point. Also,� 


and
�

are, respectively, the midpoint and half-offset co-
ordinates on the

� # -axis, that is tangent to the curved sur-
face with origin at the central point ��� (see Figures 1a,b). �� is the emergence angle of the normal ray at the topo-
graphic surface at the central point. The parameter 1 � is
the local curvature of the acquisition line, taken as positive
if this line falls below its tangent at �9� and negative if it falls
above this tangent.

,.-�3:4
and

,2-
are the radii of curva-

tures of the emerging hypothetical NIP and N wavefronts at��� , respectively. The parameters
, -�354

,
, -

and  �� are to
be automatically derived from the multi-coverage seismic
data.

In order to regularize the processing coordinates, we apply
a transformation from the local Cartesian system

�	� # ����;<�
into the global Cartesian system

�	�=��>?�
of Figure 1b. The
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Figure 1: a)Ray diagram for a paraxial ray in the vicinity of
a normal ray in a 2-D laterally inhomogeneous medium.
Definition of local coordinates of a paraxial SPG for a
curved measurement surface with respect to point � � .
b)Transformation of the local coordinates,

� 

and

�
, to its

global coordinates
� 
 @

and
�A@

. B �� is the local dip angle of
the tangent at � � (

� # -axis).  � is the angle between the
normal ray and the vertical line through ��� (

>
-axis) and  ��

is the angle between the normal ray and the normal to the
tangent at �C� .

Eighth International Congress of The Brazilian Geophysical Society



Chira-Oliva, Cruz, Garabito, Hubral and Tygel �
in the local and global coordinate systems, respectively, are
related by the expressions

� � �0@
)/* � B �� � ��
 � ��@


)/* � B �� � (2)

where B �� is the dip angle of the tangent
� # -axis at point��� . Introducing the relationships (2) into equation (1), we

find (Chira and Hubral, 2003)

�������� �	� @ 
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(3)

We now consider a pure diffraction, i.e., the situation in
which the reflector reduces to a single diffraction point. In
this case, the NIP and N waves are coincident, that is, both
propagate from a point source at NIP and have identical
radii of curvatures at ��� , i.e.

, -�� , -�3:4
. As a conse-

quence, equation (3) becomes

� � �	� @ 
 ��� @ ��� � � ��� � �����! � �"8# )+* � B �� �	� @ 
 $ � � � ' �
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 $&� � ��� � � � @ ����
 6
(4)

Equation (4) depends on two CRS parameters
� , -�354 �  �� �

associated to the NIP wave. This equation will be used
in the first step of the CRS strategy shown below. The
CRS stacking operator defined by equation (4) is an ap-
proximation of the pre-stack Kirchhoff migration operator
with smooth topography.

Setting the condition
�0@=��

to the general hyperbolic trav-
eltime equation (3), the CRS stacking operator for reflected
(and diffracted) events in the ZO configuration. We have,

� ���� �	� @ 
 � � � � ��� � �����! � �"8# )/* � B �� �	� @ 
 $ � � � ' �
� � � �"�# )/* � � B �� � )/* � �  ��, - $ )/* �8 ��1 � ' �	� @ 
 $ � � ��� 6 (5)

Equation (5), that depends on the two CRS parameters� , - �  �� � , is the one that will be used in the second step
of CRS strategy shown below .

2-D ZO CRS stack

In the 2-D situation considered here, for each point� � �	� � ��� � � at the ZO section to be simulated, the ampli-
tudes in the seismic data will be summed (stacked) along
the moveout curve defined by equation (3). The resulting
(stacked) amplitude is assigned to the given point

� � .
The three CRS stacking parameters

�  �� � ,.-�354 � ,.- � are
estimated by means of an optimization process, having the
semblance as objective function. The CRS stacking op-
timization problem consists of estimating the parameters

that maximize the semblance. In general, the problem re-
quires a combination of multi-dimensional global and local
optimization algorithms. The mathematical intervals de-
fined for the parameters are

$���� ���  �� � ��� � , $�� �, -�3:4 � , - � � . Optimization strategies to estimate these
parameters are found in the literature (e.g. Müller (1999);
Birgin et al. (1999); Garabito et al. (2001)).

In this paper, we apply the strategy given by Garabito et al.
(2001) to estimate the CRS parameters triplet, but using
the new equations (3), (4) and (5).

CRS stack processing strategy

The proposed strategy to carry out the CRS method in-
volves a combination of global and local search processes
and is divided into three steps. The curvature, 1 � , of the
seismic line at each central point is supposed to be a pri-
ori known or calculated by means of some interpolation
method. At the first and second steps we used the Sim-
ulated Annealing (SA) algorithm (Sen and Stoffa, 1995),
and at the third step the Variable Metric (VM) algorithm
(Bard (1974); Gill et al. (1981)). Each step is performed
on each given sample point

� � �	� � �(� � � that pertains to the
ZO section to be simulated.

Step I : Pre-Stack Global Optimization The multi-coverage
pre-stack seismic data is the input. The inverse problem
consists of simultaneously estimating the two parameters

 �� and
, -�354

that provide the maximum semblance value,
according equation (4). The results of this step are: 1) max-
imum coherence section, 2) emergence angle,  �� - section,
3)NIP-wave radius of curvature,

, -�354
-section, and 4)sim-

ulated (stacked) ZO section.

Step II : Post-Stack Global Optimization The post-stack
seismic data is the input. The inverse problem consists
of estimating the single parameter,

,.-
, that provides

the maximum semblance according to equation (5), in
which the previously obtained parameter,  �� , is kept
fixed. In this step the results are: 1) maximum coherence
section, 2)N-wave radius of curvature,

, -
-section, and

3)re-stacked simulated ZO (stacked) section.

Step III : Pre-Stack Global Optimization The multi-
coverage pre-stack seismic data is the input. The
inverse problem consists of estimating the best param-
eter triplet

�  �� � , -�354 � , - � that provides the maximum
semblance. In this case the CRS stacking operator is
equation (3), applied to the full multi-coverage dataset
with suitable apertures. In this step the results are: 1)
maximum coherence section, 2) optimized  �� -section,
3)optimized

, -�354
-section, 4)optimized

, -
-section, and

5)optimized ZO (stacked) section.

Example

In order to test the CRS stacking algorithm we consider
its application to a synthetic dataset computed for the 2-
D homogeneous layered model shown in Figure 2. The
model consists of four layers above a half-space. The
acquisition line presents a smooth topography. On this
model, we generate a synthetic dataset of multi-coverage
primary reflections, using the ray-tracing algorithm, SEIS88
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Figure 2: 2-D model constituted of five isovelocity layers
with curved interfaces and curved measurement surface.
Interval velocities are 1.75 km/s, 2.4 km/s, 3.5 km/s, 4.65
km/s and 5.5 km/s, respectively.

(Červený and Psěnsik, 1988). It was added random noise
with signal-to-noise ratio of � ��� ��� �

. The dataset con-
sists of 201 common-shots (CS) with 72 geophones with
separation interval of 50 meters. The minimum offset is
50 meters. The source signal is a Gabor wavelet with 40 Hz
dominant frequency and the time sampling is 4 ms.

Figure 3 shows the ray-theoretical modelled ZO section.
Next, Figure 4 shows the simulated ZO section that re-
sults from the application of the CRS stacking method for a
curved measurement surface. Due to the fact that the CRS
method involves a larger number of traces during the stack-
ing process, the simulated ZO section presents enhanced
primary reflection events, with larger signal-to-noise ratio
than the corresponding ones in the modelled ZO section
(Figure 3). Figure 5 shows the maximum coherence (sem-
blance) section that corresponds to the optimized parame-
ters. We note that the coherence values become smaller
for larger traveltimes (deeper events). Figures 6, 7 and 8
show the sections of emergence angle and radii of curva-
ture of the NIP and N waves, respectively. These sections
correspond to optimized global maxima determined in the
third step.

A comparison between the emergence angles,  �� , esti-
mated by the CRS algorithm and by modelling, respec-
tively, is shown in Figure 9. We can see that the angle pa-
rameter has been well estimated along all reflectors. Fig-
ures 10 and 11 show the analogous comparison for the
other parameters,

, -�354
e
, -

, respectively. These param-
eters are also well estimated, with the exception of the loca-
tions where abrupt changes of the topography are present.

Conclusions

A new formula for the CRS stacking method that consid-
ers the curvature of the acquisition line has been tested in
synthetic data sets with successful results. The parameters
were correctly estimated, except in the regions where there
are abrupt changes of the topography. In these regions, the
inaccuracies of the estimated parameters increases with
depth.

Posicao do traco ZO [m]

T
e

m
p

o
 [

s
]

Figure 3: ZO section with random noise (ratio S/N = 10)
obtained by forward modelling.
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(ratio S/N = 10).
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rameter for each interface are plotted separately: a) first, b)
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