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Abstract   

Through numerical seismic data we investigate the 
robustness of pre-stack depth migration in relation to the 
symmetry axis variations on locally transverse isotropic 
(LTI) media. For modeling, we use a generalization of the 
finite differences scheme introduced by (Zahradník and 
Priolo, 1994) to accommodate seismic modeling on LTI 
media defined by six parameters at each grid point, i.e., 
density, P and S phase velocities along the local 
symmetry axis, the Thomsen parameters (Thomsen, 
1986) and, the direction of the local symmetry axis itself. 
In relation to depth seismic imaging on LTI media, we 
generalize a method based on the phase-shift technique 
proposed by (Rousseau, 1997) to handle pre-stack depth 
migration for qP and qSV on such media. We carry out 
seismic modeling  and pre-stack migrations by varying the 
direction of the local symmetry axis around its true value. 
The stability of the method is exhibited through qP and 
qSV migrations for one common shot gather.   

Introduction 

Pre-stack depth migration (PSDM) applied to transverse 
isotropic media with a global vertical, or tilted, symmetry 
axis has been one of the most important subjects faced 
by geoscientists. In fact, there are a huge number of 
papers presenting effective strategies for depth imaging 
when this kind of anisotropy is involved, e.g., 
(Kitchenside, 1991), (Faria, 1993) and (Uzcategui, 1994). 
However, as (Thomsen, 2002) indicates on his 
Distinguished Lectures Notes, there are cases when the 
assumption of a unique vertical or tilted symmetry axis 
should not be applied (dipping polar anisotropic media). In 
other words, in these cases the local symmetry 
assumption, instead of the global one, is more realistic. In 
the present work, we consider modeling and depth-
migration on LTI media to handle such cases.   

For multi-component seismic modeling, we generalized 
the second order explicit finite differences scheme 
proposed by (Zahradník and Priolo, 1994) to take into 
account 2-D non-homogeneous LTI media, as it is briefly 
explained in this paper.  

For seismic imaging, we generalize a phase-shift type 
algorithm, based on the one proposed by (Rousseau, 
1997), to accommodate continuous changes of the 

symmetry axis along the model on qP and qSv pre-stack 
depth migration. 

Modeling for LTI Media 

Given the Thomsen parameters (ε, δ), P and S wave 
propagation velocities (α, β), for each medium point, plus 
the density ρ,  we can compute the elastic coefficient 
tensor in terms of the local coordinate system. According 
to (Thomsen, 2002), we apply a rotation matrix R(φ), 
where φ  specify the local axis direction, given by: 
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which transforms the elastic tensor coefficients, cijkl, into 
the global axis coordinates system: 
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In this way, the wave equation is solved using a 
generalization of the finite differences scheme proposed 
by  (Zahradnik and Priolo, 1994): 
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where Γij - stress tensor components, ui – displacement 
vector components  fi – external force density.  

    
Figure 1 – P and SV phase velocities used to generate the 
snapshot in figure 2, for ε =0.3, δ =0, and φ =30°. 

   
Figure 2 – Snapshot components for parameters defined in 
figure 1. 
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Figure 2 shows a snapshot generated by this algorithm 
for a homogeneous medium with phase velocities P and 
SV as shown in figure 1. 

This method is presented in more detail in a companion 
paper submmited to this SBGf congress (Cetale Santos et 
al.,2003b). 

Phase-Shift PSDM for LTI Media 

In the pos-stack migration process we can use the scalar 
wave equation in the frequency domain, which solution is 
given by: 
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zik

x
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After applying a 2D inverse Fourier transform we get p(x, 
z+∆z,t), as shown by (Gazdag, 1974). For an upward 
solution, we use.  

2
2

2

xz k
v
wk −−= ,                                                         (2) 

where  kx, kz, ω and v are the spatial frequencies, the 
temporal frequency and velocity, respectively.  

In modeling, the solution in equation (1) only propagates 
waves from the reflectors up to the receivers, using a ∆z 
with a negative sign. In the migration case ∆z has a 
positive sign. 

This methodology is applied in pos-stack migration, where 
half of the propagation velocity is employed in order to 
correct for the two way traveltime, and the image 
condition is given for t=0. 

For pre-stack migrations, we depropagate each 
seismogram separately and use a different image 
condition from pos-stack migration which is given by the 
direct arrival traveltime at each medium point, i.e., 
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where TD  denotes the direct arrival traveltime.  

In this way, for the isotropic grid points, kz will be 
computed according to equation (2). On the other hand, 
for the LTI grid points, kz will be estimated by the following 
algorithm. In doing this, we created a hybrid method. 

Given the dispersion relation: 
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and taking into account the following trigonometric 
relations:   
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the spatial frequency kz is estimated through a table 
generated by varying θ between 0 and π rad, and by 
computing sinθ / v(θ-φ) and cosθ / v(θ-φ), which are 
related to the values of kx/ω and kz/ω. Once we have the 
values of kx and ω it is possible to determine kz from the 

table. For some values of kx and ω, kx/ω is outside the              
sin θ /v(θ-φ) table. Such values represent the horizontal 
slowness of the evanescent waves, i.e., kz is a imaginary 
number, and the wavefield is zeroed. 

The P-P and P-SV wave migrations are computed using 
this hybrid algorithm, whose imaging conditions are given 
by the compressional direct arrival time as mentioned 
before.  

We compute the phase velocities fields using the 
following (Thomsen, 1986): 
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i. e., θ’ is the angle between the normal to the wave front 
and the local symmetry axis.   

In order to compute the compressional direct arrival 
traveltime, a technique similar to the hybrid method is 
employed. In this case, a downward modeling is 
implemented with an impulsive source located at the 
same position where the shot was generated in the LTI 
modeling. 

Examples 

For the modeling stage we use an explosive Ricker 
source where the cutoff frequency was limited to 60 Hz. 
This source is employed in order to generate only P 
waves, however the upper surface reflections also 
generate SV waves. To remove these wave-modes and 
the ones generated along the other frontiers, an 
absorbing boundary condition technique was employed. 
(Cerjan, et all,1986). 

The S wave velocity was computed from the P wave 
velocity, using the Poisson coefficient of 1/4, and the grid 
was adequately discretized in order to avoid numerical 
dispersion and instabilities.  

Instead of applying muting or f-k transform to remove the 
direct wave, a modeling of the first layer was used. We 
considered the difference between the complete 
seismogram and the direct wave one. 

In the two models presented here, the first layer was 
made isotropic, which allowed the P and SV wavefields to 
be computed through the divergent and the rotational 
operators, respectively, as in (Sun, 1999). However, if 
these layers were anisotropic, then the propagated waves 
through this media would be qP and qSV, and the 
previous operators would be inefficient. In this case, the 
computation of the qP and qSV waves can be 
implemented with a technique proposed by (Dellinger, 
1991). 
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The velocity fields α and β were smoothed in order to 
guarantee that most of the energy will arrive at the 
deepest reflectors. 

For transverse isotropic media a table is built for each 
medium, where the employed increment angle was 0.5°. 

We performed seismic simulations on two different 
models. In Example 1 the model has three layers with flat 
interfaces as shown in figure 3-(a), where the main 
objective was to recover the interface at 1400 m. In this 
example the central layer is anisotropic with an inclination 
of φ =20° and ε =0.3. In figure 2, we can observe the 
wave propagation in an anisotropic homogeneous 
medium with the same characteristics. The parameters 
for this model are on table 1. The PSDM is carried out for 
only one shot and for an explosive source located at the 
center of the model and at 12 m of depth. A 400x600 
regular grid with 4 m interval was used. 

Figures 3-(b) and (c) show the migration results using the 
same parameters used in the modeling, for the P and SV 
waves, respectively. We can observe from figure 3-(b) 
that most of the energy is concentrated to the right, which 
is the place where the phase shift occurs in figure 3-(c). If 
we take the wavelet peaks as a reference for the interface 
locations, we can see that they locate exactly the 
interfaces in both the P and SV waves images. 

Figures 4-(a) and 5-(a) show the migration results for an 
isotropic processing, using vP=α e vSV=β in the anisotropic 
layer. Figures 4 and 5, (b), (c), (d), (e) and (f) were 
obtained by the symmetry axis variations in the second 
layer. We can observe the changes in the interfaces 
positioning with different angles. In figure 4-(e) the 
positioning error is very large for the P wave image, and 
in figure 5-(e), besides the positioning error the interface 
appears tilted. 

Tables 3 and 4 show the positioning errors for the 
interface located at 1400 m of depth, relative to the 
different migration models. They were obtained by the 
difference between the interface correct position and the 
largest wavelet peak in the migrated image. These errors 
were computed for 3 traces at 1100, 1200 (source 
location), and 1300 m. The results in table 4 were 
obtained with an isotropic processing. In the first test, the 
true vertical velocities were computed from the 
anisotropic parameters, whereas in the second test the α 
e β velocities were employed.  

In table 4, we have the results obtained by deviating the 
symmetry axis from the true one, and by considering the 
true values of α, β, ε, δ and ρ. Some migrated sections 
are exhibited in figures 4 and 5. 

It was shown in (Cetale Santos et. al, 2003a), that for 
small changes in the inclination angle of the symmetry 
axis, the error in the P wave image is small. In the present 
work, we also show that the same occurs with the SV 
wavemode. The changes in this angle result in different 
error variations in the P and SV images, as expected, 
since the P and SV velocity fields can have different 
forms. Figure 1 illustrates these variation forms for the P 
and SV wave phase velocities. 

In example 2, we present the PSDM for the model shown 
in figure 6. A 400x800 regular grid with 4 m interval was 
used. We considered one common shot point gather, with 
the source located at the center of the model and at 12 m 
of depth. Figures 8-(a) e (b) show the results of the 
anisotropic PSDM, for P and SV waves, respectively. We 
can see that the interfaces were partially recovered with 
precision. In the case at the corresponding SV image, we 
can see a better resolution, as it was expected. 

Figures 9-(a) and (b) exhibited the results of the isotropic 
PSDM using the α and β velocities, respectively. Note 
that in the case of the P image, that there are small 
positioning errors in relation to the horizontal interface at 
1360 m depth, which is not presented in the SV case. In 
reality, in this last case, there are errors but smaller than 
the former one.     

Medium ρ α β ε δ Dip (φ) 
1 2460 2950 1703 0 0 00 

2 2460 3000 1732 0.3 0 200 

3 2460 3600 2079 0 0 00 

Table 1 – Thomsen parameters for example 1. 

Medium ρ α β ε δ Dip (φ) 
1 2460 2500 1443 0 0 0o 

2 2460 2550 1472 0.1 0 10o 

3 2460 2700 1559 0.2 0.1 300 

4 2460 3000 1732 0.2 0.1 -100 

5 2460 3000 1732 0 0 0o 

6 2460 3100 1790 0 0 0o 

7 2460 3300 1905 0 0 0o 

8 2460 3500 2021 0 0 0o 

Table 2 – Thomsen parameters for example 2. 

 Reflector positioning error in (m) in the off-sets:
P wave SV wave Migration 

velocity 1100 m 1200 m 1300m 1100 m 1200 m 1300 m
Vp(90°) and
Vsv(90°) -4 0 -4 0 0 -4 

α and β -20 -16 -20 -28 -28 -24 
Table 3 – Isotropic migration positioning error. 

 Reflector positioning error in (m) in the off-sets:
Wave P Wave SV Migration 

axis 
inclination 1100 m 1200 m 1300 m 1100 m 1200 m 1300 m

20º 0 0 0 0 0 0 
0° -16 -16 -16 -28 -28 -28 

20º+5 +16 +12 +12 +12 +12 +16 
20°+15° +44 +44 +44 +24 +32 +40 
20°+25° +80 +80 +80 +32 +46 +60 
20°+35° +112 +116 +120 +32 +52 +68 
20°+45° +140 +148 +148 +32 +52 +68 
20°+65° +176 +180 +180 +36 +44 +48 
20°-5° -8 -8 -8 -8 -8 -12 

20°-15° -16 -16 -16 -28 -28 -24 
20°-25° -16 -16 -16 -28 -24 -28 
20°-35° -8 -8 -8 -12 -8 -4 
20°-45° +12 +12 +16 +16 +16 +16 
20°-65° +80 +80 +80 +56 +44 +56 

Table 4- Anisotropic Migration positioning error. 
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Figure 3- (a) Model 1 (b) P-wave anisotropic migration (c) SV-wave anisotropic migration. 
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Figure 4 – Model one P-wave migration with different parameters: (a)  Isotropic layers  with the respective α velocities, (b),(c),(d),(e) e (f) Different angles 

for layer 2: For φ = 0°,15°, 25°, 65° e -15°, respectively. 
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Figure 5 – Model one SV-wave migration with different parameters: (a)  Isotropic layers  with the respective β velocities, (b),(c),(d),(e) e (f) Different 

angles for layer 2: For φ = 0°,15°, 25°, 65° e -15°, respectively.
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Figure 6- Synthetic model of Example 2. 
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Figure 7- Seismograms: (a) vertical component, (b) Horizontal component, (c) P-wave, (d ) SV- wave. 
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Figure 8 – Migration with modeling parameters (a) P-wave (b) SV-wave. 
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Figure 9  – Migration with isotropic parameters (a) α velocity for P-wave, (b) β velocity for SV-wave. 
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Discussions of Results/Conclusions  

In the Example 1 the model presents a 0.8 km anisotropic 
layer with an extreme value for ε, according to table 1 in 
(Thomsen, 1986). When we use the true parameters as 
input to the PSDM, we precisely recover the reflector at 
1400m depth, in both P and SV waves, as It can be seen 
in figure 3. 

In order to stack the SV migrated images, the first step is 
to correct the SV wave phase. This correction is not 
trivial, since it gets worse with the anisotropy. To 
exemplify this fact, we can compare the example given in 
(Sun and Wang, 1999) with Example 1, in the present 
work. Both examples have two interfaces, but in the first 
one all the layers are isotropic. Since the layers are 
parallel, the SV wave phase shift for the isotropic media 
occurs exactly bellow the source trace position, and the 
author proposes a simple phase correction where he 
multiplies by -1 all the seismic traces to the left of the 
source position. Unfortunately, this procedure cannot be 
applied when anisotropy is involved. From figure 3-(c), we 
can see that for the first interface there is not an abrupt 
phase shift. For the second interface, the phase shift 
occurs to the right of the source location, in a position that 
depends on the inclination of the symmetry axis of the 
anisotropic layers.  

In the Example 2 the model has more structural 
complexities. It includes a fault and three transversally 
isotropic layers with symmetry axes in three different 
directions. When we used the true parameters in the 
PSDM, the interfaces that were illuminated properly were 
successfully recovered, by using just one shot gather. 
Besides, we can also see a better resolution in SV wave 
image.  

We also observed that in LTI media, the phase shifts can 
occur in the reflectors of the P-wave seismograms. This 
phenomenon is caused by the different incidence angles 
of the wave front with the interfaces. For an anisotropic 
interface (isotropic-anisotropic, anisotropic-isotropic or 
anisotropic-anisotropic layers), it means that for a given 
incidence angle the velocity relations between layers are 
different, which can cause velocity inversions. Figure 7-(c) 
shows a phase shift in the third reflector, this also 
appears in the respective images shown in figures 8-(a) 
and 9-(a).   

Even though, the results presented here refer to P-P and 
P-SV waves, the proposed method is not restricted to 
these wave modes, i.e, migrations can be computed for 
the reflected waves SV-P and SV-SV, as well. 

The method employed in this work is not restricted to 
multi-component surveys, even though we have dealt 
only with horizontal and vertical displacement wavefields.  

Finally, we emphasize that our method does not involve 
any interpolation procedure to handle continuous changes 
of parameters along each horizontal level, as it is the 
case of Phase-Shift Plus Interpolation (PSPI) type 
techniques as in (Gazdag and Squazzerro, 1984). Instead 
we compute the wavefield at each point considering its 
local parameters. We adopt this procedure for two 
reasons: interpolation processes are not trivial when six 

parameters are involved, and the wavefield extrapolation 
can be accomplished in a high parallel fashion by 
exploring the complete independent characteristics of the  
proposed method. 
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