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ABSTRACT

In seismic modeling and imaging, one-way operators are used to es-
timate wavefields in the subsurface by extrapolating recorded wave-
fields. The most general one-way operator for isotropic media takes
the form of a pseudo-differential operator that is a function of vertical
slowness q, and the vertical distance ∆z between the recording loca-
tion and the source location. It is assumed that q varies in the lateral
coordinates x and y, but is invariant over ∆z.

The general extrapolation operator is still only an approximation, and
we use least squares to improve accuracy. Using a seismic modeling
algorithm, we implement the least-squares operator and extrapolate
a point source through a strongly heterogeneous medium. We com-
pare the resulting wavefield to wavefields to the expected wavefield
obtained analytically. We find that the least-squares approach provides
a superior result to the general operator and its adjoint but for much
higher computational cost. We derive a series approximation to the
least-squares operator suggesting that suggests for minimal loss of ac-
curacy, large increases in computational efficiency can be realized.

INTRODUCTION

Wavefield extrapolation forms the basis of many imaging and modeling
software used in exploration seismology. The best extrapolators bal-
ance accuracy and efficiency and understanding this balance is critical
to imaging success. The basic data of seismology are the recorded
seismic wavefields:

In a seismic array, geophones are located relative to three orthogonal
axes x1, x2 and z. Two of them, x1 and x2 represented in short by
x, define a plane normal to the approximate direction of the Earth’s
gravity near the center of the geophone array. Orthogonal to x, axis z
represents depth into the Earth.

We will represent the seismic waves recorded in the geophone array
by ψ(x,z, t), where t is an axis representing the passage of time since
excitation of the source. Fourier transform of ψ is

ψ(x,z,ω) =
1

2π

∫

ψ(x,z, t)eiωt dt, (1)

where ω is temporal frequency, and the limits of integration are defined
by the compact support of t. Subsequent operations on ψ are general
in ω so the ω notation is omitted hereafter.

If we have a notion of the variability and anisotropy of the subsurface,
wavefield ψ in the subsurface can be predicted using ψ recorded at the
surface.

EXTRAPOLATION OPERATOR P

Imaging and modeling algorithms based on extrapolation operators are
robust in the presence of large errors in velocity (they don’t generate
internal reflections and mode conversions) and they are not restricted
to traveltime assumptions (they allow multipathing).

Wavefield ψ can be extrapolated from z at the surface to z + ∆z in the
subsurface using (Margrave and Ferguson, 1999)

[P(∆z)ψ(y,z)] (x,z+∆z) =
1

(2π)2

∫

e−i〈x−y,ξ〉c(x,ξ,∆z)ψ(y,z)dξdy,

(2)
where

c(x,ξ,∆z) = ei∆zωq(x,ξ). (3)

Operator P transforms input ψ(y) from input coordinates (y,z) to out-
put coordinates (x,z+∆z), and q represents the heterogeneity of the
anisotropic slowness between z and z+∆z.

N THE ADJOINT OF P

A second useful operator is N the adjoint of P given by

[N(−∆z)ψ(x,z)] (y,z−∆z)=
1

(2π)2

∫

ei〈x−y,ξ〉c(x,ξ,−∆z)ψ(x,z)dξdy

(4)
The equations for N and P differ only in the signs on ∆z and the ex-
ponent of the Fourier kernal, and on the spatial dependence of c - P
varies with output coordinate x, and N varies with input coordinates y.
The impulse responses for N and P, however, are significantly different
as demonstrated in Figure 1.

Figure 1: Impulse responses with analytic impulse response plotted.
(a) P, large error relative to analytic impulse response. (b) N, large
error relative to analytic impulse response. The velocity used is a sinu-
soid varying laterally between 1000 and 3000 m/s. The extrapolation
interval is 300m.
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A LEAST-SQUARES EXTRAPOLATOR

As demonstrated in Figure 1, P and N are inaccurate where there is
strong lateral velocity variation. As a remedy, a least-squares operator
can be derived based on the following equality:

P
(

∆z
2

)

ψ(z) = P
(

−
∆z
2

)

ψ(z+∆z) . (5)

Following the standard least-squares proceedure, multiply equation (5)
by the adjoint of P

(

− ∆z
2

)

and invert:

ψ(z+∆z) =

[

N
(

∆z
2

)

P
(

−
∆z
2

)]−1

N
(

∆z
2

)

P
(

∆z
2

)

ψ(z) . (6)

The impulse response for the least-squares operator in Figure 2b is
an improvement over both P and N. (Figure 2a is the least-squares
operator with the inversion term set to identity for comparison).

Figure 2: Impulse responses of the least-squares operator with an-
alytic impulse response plotted. (a) For a fast operator, assume

[N+P−]
−1

= I. The operator still damps the erroneous amplitudes

compared to Figures 1a and 1b. (b) Full computation of [N+P−]
−1,

provides improved damping when compared to (a) but is much more
expensive.

SERIES FOR NP

The matrix multiplications and inversion required by the least-squares
operator are computationally prohibitive - especially in 3D. Fast alter-
natives to the cascade of operators N and P are desirable. To this end
we may seek a series expansion for NP. To begin, cast NP entirely in
the Fourier domain

[

N
(

∆z
2

)

P
(

∆z
2

)

ϕ(η,z)

]

(ξ,z+∆z) =

1

(2π)2

∫

ϕ(η,z)c

(

x,η,
∆z
2

)

c

(

x,ξ,
∆z
2

)

ei〈x,ξ−η〉dxdη, (7)

where

ϕ(η,z) =
∫

ψ(y,z)ei〈η,y〉dy. (8)

Write c
(

x,η, ∆z
2

)

as a Taylor series in c
(

x,ξ, ∆z
2

)

and NP becomes

[

N
(

∆z
2

)

P
(

∆z
2

)

ϕ(η,z)

]

(ξ,z+∆z) =

∞

∑
m=0

∫

1
m!

∂m
ξ c

(

x,ξ,
∆z
2

)

c

(

x,ξ,
∆z
2

)

im∂m
x

[

ψ(x,z)ei〈ξ,x〉
]

dx

. (9)

Integrate equation (9) by parts to get

[

N
(

∆z
2

)

P
(

∆z
2

)

ψ(x,z)

]

(ξ,z+∆z)=

∫

ψ(x,z)β(x,ξ,∆z)ei〈ξ,x〉dx,

(10)
where

β(x,ξ,∆z) =
∞

∑
m=0

im

m!
∂m

x

[

c

(

x,ξ,
∆z
2

)

∂m
ξ c

(

x,ξ,
∆z
2

)]

. (11)

Cast entirely in the space domain, NP becomes

[

N
(

∆z
2

)

P
(

∆z
2

)

ψ(x,z)

]

(y,z+∆z) =

1

(2π)2

∫

ψ(x,z)β(x,ξ,∆z)ei〈ξ,x−y〉dξdx. (12)

A series of a few well chosen terms costs significantly less computa-
tionally than the general operator. For example, in 3D, a series with a
single term requires two integrations over the space coordinates where
the general form requires four.

FACTOR SYMBOL C FOR FAST EXTRAPOLATION

Even using a single term, implementation of NP is costly due to the in-
tegrations. A way to speed up NP is to specify symbol c such that inte-
gration is replaced by fast Fourier transform. Also, there is the problem

of the matrix inverse, namely [N+P−]
−1.

Assume that c is separable such that

c(x,ξ) = a(x)b(ξ) , (13)

with a and b given by

a(x,∆z/2,ω) = ei ∆z
2 ωq̂(x,ω), (14)

and
b(ξ,∆z/2,ω) = ei ∆z

2 ωq̄(ξ,ω). (15)

Then β corresponding to N(∆z/2)P(−∆z/2) is simply

βN+P− = 1. (16)

This significant result suggests that, for c(x,ξ) = a(x)b(ξ), neither
N+P− nor it’s inverse need be computed for the least-squares opera-
tor.

Using c(x,ξ) = a(x)b(ξ), β corresponding to NP becomes

βNP (x,ξ) = a2 (x)b2 (ξ)+b(ξ)
∞

∑
m=1

im

m!
∂m

x a2 (x)∂m
ξ b(ξ) , (17)

and extrapolation proceeds as follows:

1. For each 0 ≤ m ≤ ∞, terms corresponding to a are multiplied
by input wavefield ψ.

2. Because only ei〈ξ,x−y〉 has space/wavenumber dependence,
FFT x → ξ

3. Multiply by the corresponding b terms.

4. IFFT ξ → y
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With factorization of c, the cost of extrapolation is proportional to the
number of terms in β times the cost of the fast Fourier transform. This
provides a significant saving especially in 3D. Finite differences should
probably used to compute ∂m

x a(x).

VELOCITY SMOOTHNESS, HIGH FREQUENCY, AND STABILITY

Only ∂m
ξ b(ξ) in the series part of βNP is analytic. Symbol a represents

the heterogeneity in the medium. Symbol b represents a background
medium that may be anisotropic and is usually analytic. Analysis of
∂m

ξ b(ξ) suggests that only even terms are significant. Odd terms are

scaled by ξ and IFT (ξ → x) annihilates them. In general:

∂m
ξ b(ξ,∆z/2,ω) = i

∆z
2

ωb(ξ,∆z/2,ω)∂2m
ξ q̄(ξ,ω) , (18)

and

βNP (x,ξ,∆z/2,ω) =

a2 (x,∆z/2,ω)b2 (ξ,∆z/2,ω)

+ i
∆z
2

ωb(ξ,∆z/2,ω)
∞

∑
m=1

i2m

(2m)!
∂2m

x a2 (x,∆z/2,ω)∂2m
ξ q̄(ξ,ω) .(19)

For conventional seismic frequency bands (0 - 1 kHz) and velocities
(0.1 - 10 km/s), this series for βNP diverges unless a varies smoothly
(velocity variation is smooth). Implicit is a high frequency approxima-
tion.

EXAMPLES

In seismic imaging, useful prescriptions for q̂ and q̄ are associated with
phase-screen operators. Consistent with the factorization of c we have

q̂(x,ω) =
c0

ω2

[

(

ω
c(x)

)2

−

(

ω
c0

)2
]

, (20)

and

q̄(ξ,ω) =
1
ω

√

(

ω
c0

)2

−〈ξ,ξ〉. (21)

Vertical slownesses q̂ and q̄ correspond to the simplest of a class of
operators collectively called the generalized-screen operators (Wu and
Huang, 1992; Le Rousseau and de Hoop, 2001). Velocity c0 is a back-
ground velocity representative of the medium. For the following exam-
ples, we set m = 0. Propagation of source impulses is simulated for
two strongly heterogeneous velocity models (isotropic, Figures 3 and
5). The SEG salt model (Figure 3) represents a salt body embedded
in a smoothly varying sedimentary background. A source is forward
modeled and a snapshot is taken in depth and distance (Figure 4).
For comparison, the analytic impulse response from traveltime calcu-
lations is plotted. Good agreement of first arrivals can be seen with
major departures associated with headwaves (the sides of the impulse
response) not extrapolated by extrapolation operators, and a caustic
(beneath the salt) that the travel time calculation cannot model. Similar
results are apparent for the Marmousi model (Figures 5 and 6). Com-
parison to finite difference modeling is required to establish the validity
of multipathed arrivals in both figures.

CONCLUSIONS

A new least-squares approach is used to derive a series representation
for wavefield extrapolation. Terms in this series consist of spatial and
wavenumber derivatives of the extrapolation symbol. An approximation
to the extrapolation symbol us used to significantly reduce the compu-
tational load implied by the least-squares extrapolator. It is based on
factoring the extrapolation symbol into a product of two terms. One
term representing the lateral heterogeneity of the isotropic approxima-
tion to the medium. The other representing a background medium that
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Figure 3: SEG salt model. Velocities correspond to P-waves traveling
in an isotropic medium
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Figure 4: Snapshot of a wavefield propagating through the model
of Figure 3. A standard, first-order phase-screen operator (Wu and
Huang, 1992; Le Rousseau and de Hoop, 2001) was used to compute
this image. The location of the source is 6000m distance and 1000m
depth, and the elapsed time is 0.59ms. For comparison, the corre-
sponding traveltime contour is plotted. First arrivals reliably track the
analytic response with departures due to headwave generation (one-
way extrapolation operators don’t model head waves) and multipathing
(traveltime methods have limited ability to model multipathing).
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Figure 5: The Marmousi model. Velocities correspond to P-waves in
an isotropic medium.
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Figure 6: Snapshot of a wavefield propagating through the model
of Figure 5. A standard, first-order phase-screen operator (Wu and
Huang, 1992; Le Rousseau and de Hoop, 2001) was used to compute
this image. The location of the source is 6000m distance and 1000m
depth, and the elapsed time is 0.59ms. For comparison, the corre-
sponding traveltime contour is plotted. First arrivals reliably track the
analytic response with departures due to headwave generation (one-
way extrapolation operators don’t model head waves) and multipathing
(traveltime methods have limited ability to model multipathing).

can be anisotropic. The result eliminates the requirement of comput-
ing two matrix multiplications and a matrix inverse in the least-squares
approach.

For velocity variation that is not smooth, the extrapolation symbol was
found to be stable in the high frequency limit. Two forward modeling
examples were presented to demonstrate the utility of this operator.
The 0th order version of the extrapolation symbol was used and found
to be identical to the first order phase-screen operator. This operator
returned very good results for first arrivals compared to forward model-
ing using traveltime computation, and provided multipathed arrivals as
well.

For smooth velocity variation, the least-squares operator is an enhance-
ment to the class of phase-screen operators, allowing them to be opti-
mal in a least-squares sense for an extra cost proportional to the num-
ber of terms chosen for the extrapolation symbol. It is hoped that new
approaches to truncation of this series will result in fast extrapolation
operators that are robust in the presence of strong velocity variation.
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