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Abstract

We present some new theoretical aspects of the 3-D
Common-Reflection-Surface (CRS) stack to simulate zero-
offset (ZO) volume from pre-stack seismic data. The CRS
method is based on the second-order hyperbolic approxi-
mation of the reflection traveltime in the vicinity of a central
ray. The hyperbolic traveltime expression depends on eight
parameters that are estimated by means of a coherence
analysis procedure. After an optimization process, the es-
timated CRS parameters are substituted in the hyperbolic
traveltime and applied to stack the multi-coverage seismic
data providing a high-resolution ZO volume. The optimized
CRS parameters can also be used for a number of applica-
tions. These include interval velocity inversion, computa-
tion of geometrical spreading factors and projected Fresnel
zones, and time and depth migration schemes.

Introduction

3-D seismic surveys are at present major tools in hydrocar-
bons exploration and exploitation (Walton, 1972). The first
3-D seismic survey was carried out in the late 1970s. In
1975, 3-D surveys were first performed on a normal con-
tractual basis. Bone et al. (1976) showed the new tech-
nology to the world. The scope of 3-D seismic for field
development was firstly reported by Tegland (1977). But it
took until the early 1990s before they gained general ac-
ceptance throughout the industry.

The essence of the 3-D method is an areal data collection
followed by processing and interpretation of a data volume.
3-D surveys provide more details of the subsurface and
contribute significantly to the problems of field appraisal,
development, production and exploration. The fundamen-
tal objective of the 3-D seismic method is an increased res-
olution.

In order to overcome a number of limitations of the NMO-
method, so as to improve seismic-imaging results, so-
called model-independent methods have been introduced.
The Common-Reflection-Surface (CRS) stack is one of
these new methods. For a survey on model-independent
methods, the reader is referred to Hubral (1999). The

CRS method uses the second-order paraxial approxima-
tion of the reflection traveltime to simulate ZO sections (ZO-
CRS stacks) and common-offset (CO) sections (CO-CRS
stacks). The resulting stacked sections are characterized
by an increased signal-to-noise ratio and improved lateral
resolution of the stacked volume. In the ZO case, the 3-D
traveltime formula depends on eight parameters, that are
determined by a multi-parametric optimization procedure.
An impressive example of 3-D CRS stack application is
given by Bergler et al. (2002).

In this paper, we examine the 3-D CRS traveltime formula
in the framework to its application to construct a simulated
ZO volume by a stacking procedure carried out on a 3-D
pre-stack seismic data. We also present some applications
that result from the knowledge of the estimated 3-D CRS
parameters.

3-D ZO CRS stacking operator for reflections events

We consider an arbitrary 3-D layered model below a planar
measurement surface (Figure 1). In this model, we con-
sider a fixed primary ZO reflection ray, called the central
ray. Its coincident source-receiver pair at the measurement
surface, called the central point, is denoted by ��� . The
traveltime of the ZO central ray is denoted by ��� . A fixed
2-D Cartesian coordinate system on the planar horizontal
measurement surface and with origin at the central point,
��� , is used to locate all sources, 	�

������������� , and re-
ceivers, ��
�������� ��� � on that surface. Source and receiver
pairs, �!	"����� , can be conveniently located by means of mid-
point and half-offset coordinates, ��#%$&��'(� , defined by #)$*

�,+.-0/"�1������2�����������23���4� and '�
5�,+.-"/0�1�����768���������967���:� ,
respectively (see Figure 2).

For a primary reflection ray that connects a source and re-
ceiver pair, �<;=�?>@� in the vicinity of the central point, ��� , we
can express its hyperbolic traveltime approximation in the
form (see, e.g., Bortfeld (1989);Schleicher et al. (1993))

��A0��#%$B��'(�C
D�E�,��2D/GF(�IHJ#%$K��A
2D/L� � # $ HJM7NPO)QSRTNU# $
2D/L� � 'VHJWXN O%QZY NK'[�

(1)

Here, F(��
\��]���-^]:#)$U��-"/ is the horizontal projection of the
slowness vector of the normal (central) ray at ��� with re-
spect to the measurement surface. Moreover,

M O�_N R N 
 +
/
] A �
]�' A �`W O�_N Y N 
 +

/
] A �
]:# A$ � (2)

are /bac/ second-derivative (Hessian) matrices also eval-
uated at � � . We recall that Y Nd�?WTNd�eRTN and MbN represent
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Figure 1: 3-D model constituted of two isovelocity layers
with curved interfaces above a dome-like half-space. The
normal (central) ray ��������� ��� is plotted in red and de-
scribes the direction of propagation of the NIP and N hy-
pothetical wavefronts. The paraxial ray ;��@> is depicted in
green. ���%� �:�	��� is the global cartesian coordinates system
(modified from Höcht (2002)).

the (constant) /LaX/ submatrices of the 4x4 propagator ma-
trix 
 N , that characterize the one-way normal ray from the
normal-incident-point (NIP) of the central ray to the mea-
surement surface (Bortfeld (1989); Hubral et al. (1992)). In-
troducing the notation M N O%Q R N 
 Y -�� Q �ZW N O%Q Y N 
 WX-�� Q
and F � 
�
�-�� Q in eq. (1), where � Q is the medium velocity
at the central point, equation (1) can be recast as

��A"��#)$B��'=� 

�
���Z2 /� Q 
 H #)$�� A 2 /=���� Q #)$ H Y #)$

2 /=� �� Q ' HLW 'c�
(3)

Following Hubral et al. (1991) and Chira (2003) we can also
write

Y 
 M������VM����������� W 
 M������ M����� � (4)

where M���� is the 2-D transformation matrix (Jäger, 1999)

M ��� 
 M � � � Q �SM � � � A ��� (5)

in which

M���� � Q � 

�"!$#&% � Q 6 %(' � � Q%(' � � Q !$#&% � Q � �

(6)

M � � � A � 

� !$#&% � A*)) + � �

are rotation matrices.

The superscript + denotes transposition. Y and W are
symmetric / a3/ matrices that represent the second-order
derivatives of the traveltime � with respect to midpoint and
half-offset coordinates times the velocity � Q . 
 is the ground
surface projection vector of the normal ray direction 3-D
vector at � � . � Q and � A describe the azimuth and polar
angle of the normal ray direction. � and � are symmet-
ric /�a�/ curvature matrices of the Normal-Incidence-Point
(NIP) and Normal (N) waves (Hubral, 1983). The 3-D CRS
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Figure 2: Definition of midpoint #%$ and half-offset ' vec-
tors on the planar measurement surface. 	 and � denote
the shot and receiver vectors originated at the point ��� .
��� Q ��� A � is the local Cartesian coordinates system centered
at point ��� .
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Figure 3: Three seismic lines L + , L / , e L , intersecting at
point � � in the local ��� Q �,� A � Cartesian coordinate system.
They define the directions of unitary vectors -.0/ �21=
 +"�e/��	,�� .
	 / , � / are the shot and receiver coordinates on three seis-
mic pseudo-lines.
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stacking operator (equation 3) depends on eight parame-
ters: 3 parameters from matrix Y , 3 parameters from ma-
trix W and 2 from vector 
 .

We now discuss two important simplifications of the move-
out formula (3), that are part of the search strategy for esti-
mating its eight CRS parameters at ��� .
CMP gather

For a Common-Midpoint (CMP) gather, the source 	 is lo-
cated opposite to the receiver � with respect to the central
point � � (Figure 3), namely 	&
 6J� . In midpoint and half-
offset co-ordinates and assuming the CMP at the origin,
we have the simple condition #%$�
 ) . Equation (3), then,
reduces to

��A�����c
 ��A� 2 /%���� Q '\HLW5'Z� (7)

Matrix � is interpreted as the inverse square NMO velocity
matrix given by

�V
 �,� W
/�� Q � (8)

ZO gather

In the case of a ZO configuration, the coincident source
and receiver pairs in the ZO gather are easily described by
the condition 	 
V� , or '5
 ) in midpoint and half-offset
co-ordinates. Substituting into equation (3), we find

� A�	� ��# $ � 

�
� � 2 /� Q 
@H1# $ � A 2 /=�,�� Q # $ H Y # $ � (9)

The 3-D ZO CRS method has been already successfully
applied both to synthetic (Cristini et al., 2001) and real
datasets (Bergler et al., 2002). In Chira (2003), some
strategies to estimate CRS eight parameters have been
proposed.

3-D ZO CRS stacked volume

The first application of the 3-D ZO CRS stack on syn-
thetic dataset was carried out by ENI Division (AGIP-Italy)
(Cristini et al., 2001) with impressive results.

First results on the 3-D ZO CRS stack were obtained by
ENI Division (AGIP-Italy) using synthetic datasets. The
reader is referred to Cristini et al. (2001) for more details
concerning the strategy applied for this stack. The consid-
ered model is the one shown in Figure 4. It is a 3-D acous-
tic model consisting of two isovelocity layers with curved
interfaces above a dome-like half-space. A conventional
acquisition scheme has been applied. Bin size (Figure 3) is
0.025 x 0.025 km2, with 0.0125 and 3.5 kms being the min-
imum and maximum offsets obtained with a cross-shooting
technique with 10 receivers cables by 96 channels. The pri-
mary reflection responses have been generated using the
seismic package NORSAR 3-D, with a 20 Hz zero-phase
Ricker wavelet.

Figure 5 results from the application of the 3-D CMP stack.
This (conventional) process only considers 3-D CMP gath-
ers. Figure 6 shows the result of the 3-D CRS ZO stacking

Figure 4: 3-D model constituted of two constant velocity
layers above a dome-like half-space. The velocities are, 2,
3 and 5 km/s, respectively.

operation applied to the previous 3-D CMP stack. Finally,
Figure 7 shows the 3-D CRS ZO stack applied to the full
multicoverage pre-stack seismic data computed from the
model of Figure 4. Note the good recovery of the events in
their correct positions.

Further applications

Estimation of ZO geometrical spreading factors

For a point-source excitation in a 3-D homogeneous
medium, a spherical wavefront propagates through the
medium without any intrinsic attenuation. The so-called
spherical divergence accounts for the amplitude loss that
occurs because of the expanding wavefront. The ampli-
tude change is inverse proportional to the radius of curva-
ture of the propagating wavefront. In the case of propaga-
tion in an inhomogeneous layered medium, the wavefront
are no longer spherical. Accordingly, the term geometri-
cal spreading (GS) replaces the previously used spherical
divergence.

According to ray theory, the GS factor can be accounted
for by a factor 
 that appears in denominator of expression
of amplitude. The GS has a major impact on the change
in amplitude, in many case much more relevant than the
ones caused by transmission through interfaces along the
ray. As a consequence, correct elimination of the GS in the
observed amplitudes can be essential for Amplitude versus
Offset (AVO) or Amplitude versus Angle (AVA) studies. The
term true-amplitude referred to a section in which the am-
plitudes have been corrected from their GS effects (Hubral,
1983). In this case, for primary reflections, these ampli-
tudes can be interpreted as (scaled) measures of reflection
coefficients, so that AVO or AVA is made possible.

As shown in Hubral (1983), the 3-D ZO GS factor 
 can be
expressed as


[
 /� �
��� � � 6 � � � (10)

Introducing equations (4) into equation (10), we find that 

can be recast as


 
 /� �
��� �!M ���� W M ��� 6 M ���� Y M ��� � � (11)
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Figure 5: Volume obtained by applying the 3-D CMP stack
referred to model of Figure 4. In this process was only
considered the 3-D CMP gathers (Courtesy of AGIP).

Figure 6: Volume obtained by applying the 3-D ZO stack
from the result of the 3-D CMP stack (Courtesy of AGIP).

Figure 7: Simulated ZO volume by applying the 3-D ZO
CRS stack method. This process considers all the multi-
coverage seismic data from 3-D model (Figure 4) (Courtesy
of AGIP).
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Figure 8: 3-D model with an arbitrary normal ray
��� ����� ��� . The 3-D Fresnel zone is shown at point NIP.
Also is depicted the projected Fresnel zone onto the mea-
surement surface and from there onto the traveltime sur-
face (adapted from Hubral et al. (1993)).

Projected Fresnel zones

Images that result from Kirchhoff depth or time migration
can are very affected by the choice of apertures that are
used in the process. The best apertures are provided by
the so-called Fresnel zone of the reflector to be imaged.
In the ZO situation, the concept of a projected Fresnel
zone has been introduced in Hubral et al. (1993). The pro-
jected Fresnel zone represents an optimum aperture for the
stacking procedure. For the 3-D ZO CRS stacking opera-
tor of (equation 1) we use the projected Fresnel zone on
the earth surface can be expressed as (see Hubral et al.
(1993)) �

# � H����"# � ���	� � (12)

The vector # � is the projected coordinate into the earth sur-
face of a point in the vicinity of NIP on the reflector (Hubral
et al. (1993), see Figure 8).

�
is the period of the consid-

ered time-harmonic wave. Following Hubral et al. (1993)
the projected Fresnel matrix � � is given by

� � 
 ,"/�
 W O%Q� Y � 6 M O%Q� R �
� � (13)

Introducing the relationships for the 3-D ZO CRS stack op-
erator, M N O%Q R N 
 Y -�� Q and W N O%Q Y N 

WX-�� Q (Chira,
2003) into equation (13) we obtain

���&
 ,"/� Q � W 6 Y�� � (14)

Finally, we include (14) into equation (12) for obtaining,�/� Q
��� # � H � W 6 Y�� # � ��� �	� � (15)

Equation (15) can be considered as the initial aperture for
the 3-D ZO CRS stacking operator of equation (3).
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3-D ZO-CRS stacking operator for diffraction events

One of the important problems in the interpretation of seis-
mic data is the identification of structural geologic feature
(e.g. faults, pinch-outs, small-size scattering object). Local
elements in the subsurface with a size comparable to the
source wavelength are usually ignored by processing and
are identified only during the interpretation process.

To obtain reliable information about possible discontinu-
ities in the subsurface, the presence of diffracted waves, in
the vicinity of the discontinuity location, is very important.
The presence of diffracted waves in the multi-coverage pre-
stack seismic data can be useful for detection of disconti-
nuities.

In conventional seismic processing, diffracted waves are
regarded as noise and the information contained in these
waves has not been used. In the CRS method, however,
attributes can be used to characterize diffraction events.

In the case of a diffraction point, the 3-D ZO diffracted trav-
eltime can be formulated by setting the matrices �\
 � or
Y 
 W in equation (3). This yields

��A� /���� ��#%$&��'(� 
 �
��� 2 /� Q 
*HJ#%$ � A 2 /=�,�� Q � #%$ HLW #%$ �
2 /=� �� Q � ' HLW ' � �

(16)

The above equation depends on five parameters: two com-
ponents of vector 
 and three elements of matrix W . Chira
(2003) also proposed some strategies to determine these
parameters.

Conclusions

We have presented the formalism and examples of ap-
plications of the 3-D ZO CRS stacking operator for re-
flection events. This operator depends on eight search-
parameters. We also proposed the 3-D ZO CRS stack op-
erator for diffraction events which depends on five parame-
ters. Both stacking operators are in fact valid for a 3-D lat-
erally inhomogeneous velocity model and can be used to
simulate a ZO volume from multi-coverage reflection pre-
stack seismic data. We have shown special formulas for
applications of the 3-D ZO CRS attributes to determine ZO
geometrical spreading factors and ZO Projected Fresnel
zones. The latter are important to define the aperture for
stacking and migration.
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Jäger, R., 1999, The Common-Reflection Surface stack -
Theory and application.: Master’s thesis, University of
Karlsruhe (Germany).

Schleicher, J., Tygel, M., and Hubral, P., 1993, Parabolic
and hyperbolic paraxial two-point traveltimes in 3D me-
dia: Geophysical Prospecting, 41, no. 4, 495–514.

Tegland, E. R., 1977, 3-D seismic techniques boost field
development: Oil and Gas Journal, 75, no. 37, 79–82.

Walton, G. G., 1972, Three-dimensional seismic method.:
Geophysics, 37, 417–430.

Eighth International Congress of The Brazilian Geophysical Society


