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Abstract

The exact expression for the P-P reflection coefficient
(Zoeppritz equations) has a rather complicated depen-
dence on the medium parameters (P- and S-wave veloc-
ities and density) at both sides of the interface. For the in-
version purpose, it’s required approximations formulas. In
this work we discuss some approximations based on Taylor
series and on the impedance concept. We also present the
inversion process induced by these approximations.

Introduction

With some assumptions in the model parameters, like re-
strictions on the elastic parameters contrast, or at the
incidence angle, approximations to the Zoeppritz equa-
tion, based on Taylor series, that have simpler expres-
sion and provide better access to the medium parameters
can be derived. From these expressions we can establish
a simple inversion process based on linear least square
method. However this technique is not so efficient, be-
cause it doesn’t provide an explict expression for recuper-
ate the elastic parameters, or their contrasts. Using this,
we just obtain linear combinations of the contrast of these
parameters.

Recently, some authors like Connoly (1999) and Santos et
al. (2002), showed that approximations for the P-P reflec-
tion coefficient and inversion processes using impedance
concept provide better results. The ideia of this kind of
approximation is to look for a representation similar to the
equation for the normal-inicidence elastic reflection coeffi-
cient.

Approximations by Taylor Series

The P-P elastic reflection coefficient (RPP ) can be approx-
imated by expanding some terms of the Zoeppritz equation
in a Taylor series, with some assumptions in the model pa-
rameters. In the following, we review four of these approxi-
mations.

The first one is called weak-contrast approximation, which
assumes that the contrast in the elastic parameters are
small. The linear approximation of Aki & Richards (1980) is
given by:
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Here, ∆α and α denote, respectively, the average and the
difference of the P-wave velocity values, α1 and α2. The
same notation is used for S-wave velocity, β, and density,
ρ. Moreover, θ is the incidence angle.

Another way to approximate RPP is to assume that the dis-
tance between the source and the receiver is small. Conse-
quently, the ray parameter p = sin θ/α1 will be also small.
So the small-offset approximation is obtained by expanding
the square-root terms (1−v2p2)

1
2 in the Zoeppritz equation

in a Taylor series. The result is (see, e.g., Täjland (1993)):
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The third approximation to be presented is the weak-
contrast and small-offset approximation that requires the
two previous assumptions. This is done by expanding all
terms of the weak-contrast approximation (1) in a Taylor
series in p,
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Finally, the last expression to RPP obtained by Taylor se-
ries is the pseudo-p2 approximation. According to Wang
(1999), a peudo-p2 approximation can be derived by ex-
panding the p-terms in the Zoeppritz equations, in a differ-
ent way than on the small offset approximation. After some
algebraic manipulation the following quadratic expression
with respect to elastic contrasts is obtained
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In order to analyse the accuracy of the approximations
described above we consider two two-layer models which
have small and large contrast. Table 1 sumarizes the pa-
rameters.
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Medium α(km/s) β(km/s) ρ(km/s)
1 3.42 1.78 2.53
2 3.39 1.79 2.50

Contrast 0.01 0.01 0.01
1 2.77 1.52 2.30
2 4.55 2.61 2.44

Contrast 0.34 0.48 0.02

Table 1: Models with small contrast (above) and large
contrast (below).
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Figure 1: Comparison of weak contrast (WC), small off-
set (SO), weak-contrast and small-offset (WC+SO) and
pseudo-p2 (p2) approximations for the small contrast model
in Table 1.

Figures 1 and 2 show the performance of the four ap-
proximations compared with the exact expression for RPP

(Zoeppritz). From these Figures we can observe that for
small contrast and for small incidence angles (up to 30o)
the approximations give better results. We also note that
the weak contrast approximation presents the best results.

In order to establish an inversion process we come back
to expressions (1) - (4) and consider the two assumptions
together: small contrast and small incidence angle. There-
fore, those expressions can be rewriten as:

Rpp ≈ G0 + G1 sin2 θ. (5)

Each one of the expressions (1) - (4) have to be treated
separately to become an expression like (5).

For expression (1) we use the assumptions that θ is small
and make the substitution tan2 θ ≈ sin2 θ. Then formula (1)
turns to be as expression (5) with (Shuey, 1985)
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Regarding expression (3), we use again the fact of a small
incidence angle, and discard the p4-term. Then it becomes
the same expression defined by equations (5) - (7).

The small contrast assumption permit us to do not consider
the quadratic term with respect to the elastic contrast in
expression (4) and then it becomes exactly as formula (1).
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Figure 2: Comparison of weak contrast (WC), small off-
set(SO), weak-contrast and small-offset (WC+SO) and
pseudo-p2 (p2) approximations for the large contrast model
in Table 1.

The approximation defined by expression (2) has the shape
of expression (5) already. Although the parameters G0 and
G1 are not the same as equation (6) and (7).

The reflection coefficient is then approximated by expres-
sions (5) - (7), using a least-square procedure we can ob-
tain the values of the intercept G0 and the gradient G1.
Table 2 shows the accuracy (the percentual error of each
parameter) of this inversion process when we add a q%
white noise to the exact reflection coefficient’s curve of the
models in Table 1.

q Error Error
G0 G1

0 0.31 29.15
5 0.56 30.37
10 1.16 34.13
15 1.42 48.12
30 2.95 82.31

q Error Error
G0 G1

0 1.12 21.35
5 1.16 21.53
10 1.53 20.80
15 2.02 22.68
30 2.52 23.55

Table 2: Percentual error for G0 and G1 when a
q% white noise is added on the exact RPP curve to
the small contrast model (left) and the large contrast
model (right).

Note that only the intercept gives reliable results. Although,
we have got a good approximation for this parameter it is
not very useful because its formula does not have an ex-
plicit relation between the elastic parameters, or their con-
trasts. That is, we can only have an ideia of the sum of the
contrast in the P-wave velocity and the density. When we
use the impedance concept we can establish better rela-
tions to recuperate the elastic parameter, or their contrasts.
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Impedance-Type Approximation

As seen by the recent literature (Connolly, 1999; Santos &
Tygel, 2004) the impedance concept seems to be a good
choice to approach the reflection coefficient. The ideia is
to find an impedance function I = I(α, β, ρ, θ), for which
the reflection coefficient can be given, or approximated, by
an expression similar to the one of normal-incidence case,
i.e.,

RPP =
I(α2, β2, ρ2, θ2)− I(α1, β1, ρ1, θ1)

I(α2, β2, ρ2, θ2) + I(α1, β1, ρ1, θ1)
=

I2 − I1

I2 + I1
(8)

The elastic impedance function (EI) proposed by Connoly
(1999) is given by

I = N0ρ
1−4K sin2 θαsec2 θβ−8K sin2 θ, (9)

where N0 is a normalization constant and K = β2/α2. This
result assumes that K is constant and θ1 = θ2 = θ, where
θ1 and θ2 are the incidence and transmission angle, re-
spectively.

Another impedance function was proposed by Santos et al.
(2002), and it is called reflection impedance function. This
function is determinated considering the ray parameter p
(p = sin θ/α1) constant and a functional dependence be-
tween β and ρ, via ρ = bβγ , where b is some constant of
proportionality and γ is a constant,

I = M0
ραp

1− α2p2
exp{−2[2 + γ]β2p2}, (10)

with M0 being a normalization constant.
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Figure 3: Comparison of the elastic impedance (EI), the re-
flection impedance (RI) and the weak contrast (WC) ap-
proximation for the small contrast model in Table 1.

As we can see from Figures 1 and 2 the weak contrast
(WC) approximation is more accurate than the others, even
for the quadratic approximation. Therefore, to analyze the
performance of the impedance formulas, we compare them
with the exact expression and the WC approximation. Fig-
ures 3 and 4 show the results. Note that, for incidence an-
gles close to the critical one, only the reflection impedance

follows the exact curve. In both models we observe that
the RI approximation actually gives better results than the
others.
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Figure 4: Comparison of the elastic impedance (EI), the re-
flection impedance (RI) and the weak contrast (WC) ap-
proximation for the large contrast model in Table 1.

From the impedance approximation (8), we define a new
quantity F = I2/I1, where I is one of the impedance func-
tions given by equations (9) and (10). The reflection coeffi-
cient can then be recast as

RPP =
I2 − I1

I2 + I1
=

F − 1

F + 1
(11)

from wich

F =
RPP + 1

RPP − 1
. (12)

Considering the elastic impedance function (9) and using
the approximation tan2 θ ≈ sin2 θ, we arrive at
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Appplication of a linear least-square procedure finds the
best A1 and A2 that fits ln F and sin2 θ.

From the reflection impedance function (10), we have

F =
ρ2α2
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cos θq
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which can be written as

F = B1
cos θp

1−B2
2 sin2 θ

exp{B3 sin2 θ}. (15)

Again we can find B1, B2 and B3 in a least-square sense.
However it is not possible to linearize the expression to ap-
ply linear least-square; a nonlinear solver must be used.

To analyze the impedance-type approximations we con-
sider the 25 elastic isotropic models of Castagna & Smith
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(1994). For each model we have applied the inversion pro-
cesses to the case of shale over gas sand. For the elastic
impedance we have used incidence angles up to 30o and
for the reflection impedance we use angles up to 70o. Fig-
ures 5 and 6 show the results. Observe that, even using
larger incidence angles, the inverted parameters for the re-
flection impedance approximation gives smaller errors than
the inverted paremeters for the elastic impedance approxi-
mation. Another feature of the RI approximation is that the
three inverted parameters have a more explicit contrast re-
lation. For example, parameter B2 gives the ratio for the
P-wave velocity.

0 5 10 15 20 25
−1

0

1

2

3

A
1

0 5 10 15 20 25
0

50

100

150

E
rr

or
 A

1 
(%

)

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

Model

A
2

0 5 10 15 20 25
0

10

20

30

40

50

Model

E
rr

or
 A

2 
(%

)

Figure 5: Comparison of modeled (o) and inverted (+)
parameters A1 (above), A2 (below) for the 25 models
(shale/gas sand), considering incidence angles up to 30o.
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Figure 6: Comparison of modeled (o) and inverted (+) pa-
rameters B1 (above), B2 (midle) and B3 (bellow) for 25
models (shale/gas sand), considering incidence angles up
to 70o.

Conclusions

We have presented two kind of approximations for the
Zoeppritz equations: Taylor- and Impedance-types. To dis-
cuss their accuracy we have used small and large contrast
models for which the approximations curves have been
plotted and compared.

Since the impedance-type approximation has provided bet-
ter results, we have discussed inversion process based on
this concept. Using 25 elastic models (shale/gas sand) we
verified that the impedance inversion, especially the one
based on the RI function, was more efficient to recuperate
the elastic parameters.

Current research are being done to improve the inversion
process by the reflection impedance function.

Acknowledgements

We thank CNPq (Grant 307165/2003-5) and FAPESP
(Grants 01/01068-0 and 03/09839-1), Brazil, and the spon-
sors of the WIT – Wave Inversion Technology Consortium,
Germany.

References

Aki, K. I. & Richards, P. G. , 1980, Quantitative Seismol-
ogy, W.H. Freeman and Co.

Castagna, J. & Smith, S. , 1994, Comparison of AVO in-
dicators: A modelling study, Geophysics, 59, 1849–
1855.

Connoly, P. , 1999, Elastic Impedance, The Leading
Edge, 18, 438-452.

Santos, L. T., Tygel, M. & Ramos, A. C. B. , 2002, Re-
flection Impedance, 64th European Association of
Geoscientists & Engineers Conference, P-182.

Santos, L. T. & Tygel, M. , 2004, Impedance-Type Ap-
proximations of the P-P Elastic Reflection Coefficient:
Modeling and AVO Inversion, Geophysics, 69, 592–
598.

Shuey, R.T. , 1985, A Simplification of the Zoeppritz Equa-
tions, Geophysics, 50, 609–614.
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